Home
Class 12
MATHS
int[(1)/(logx)-(1)/((logx)^(2))]dx=...

`int[(1)/(logx)-(1)/((logx)^(2))]dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, int_(2)^(e)[(1)/(logx)-(1)/((logx)^(2))]dx=e-(2)/(log2)

int[log(logx)+(1)/((logx)^(2))]dx

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

Find int [log(logx)+(1)/((logx)^(2))]dx

int (logx-1)/((logx)^(2)) dx =

int(logx)/((1+ logx)^(2))dx=

if int_2^e [(1/logx)-(1/(logx)^2)] dx=a+(b/log2)' then