Home
Class 11
MATHS
If (1+i)^100=2^49(x+iy) then x^2+y^2 =...

If `(1+i)^100=2^49(x+iy)` then `x^2+y^2 =`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1 + i) ^ (100) = 2 ^ (49) (x + iy) thenx ^ (2) + y ^ (2) = (i) 0 (ii) 4 (iii) 8 (iv) 16

If ((1+i)/(1-i))^(100)=x +iy then (x,y) = .......

If (1-i)/(1+i)=x+iy , then x^2+y^2 is equal to:

If ((1+i)^2)/(2-i)=(x+iy)" then "x+y =

If (-7-24i)^(1/2)=x-iy , then x^(2)+y^(2) is equal to

If x+iy=(1+i)(1+2i)(1+3i) , then x^(2)+y^(2) equals:

If ((1 - i)/(1+ i))^(100) = x + iy then the value of (x, y) is:

If x+ iy=(1+ 4i)(1+5i) , then (x^(2)+y^(2)) is equal to :