Home
Class 11
MATHS
The angle between the tangents drawn fro...

The angle between the tangents drawn from the point (1, 4) to the parabola `y^2=4x` is (A) `pi/6` (B) `pi/4` (C) `pi/3` (D) `pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between the two tangents from the origin to the circle (x-7)^(2)+(y+1)^(2)=25 equals (A) (pi)/(4) (B) (pi)/(3) (C) (pi)/(2) (D) (pi)/(6)

If the tangents drawn from the point (0,2) to the parabola y^(2)=4ax are inclined at angle (3 pi)/(4), then the value of 'a' is

If the tangents drawn from the point (0, 2) to the parabola y^2 = 4ax are inclined at angle (3pi)/4 , then the value of 'a' is

The angle between the tangents to the curve y=x^2-5x+6 at the point (2, 0) and (3, 0) is pi/2 (b) pi/3 (c) pi (d) pi/4

The angle between the tangents to the curve y=x^2-5x+6 at the point (2, 0) and (3, 0) is pi/2 (b) pi/3 (c) pi (d) pi/4

The angle between the tangents to the curve y=x^2-5x+6 at the point (2, 0) and (3, 0) is (a) pi/2 (b) pi/3 (c) pi (d) pi/4

The angle between the tangents to the curve y=x^2-5x+6 at the point (2, 0) and (3, 0) is (a) pi/2 (b) pi/3 (c) pi (d) pi/4

The angle between the tangents to the curve y=x^2-5x+6 at the point (2, 0) and (3, 0) is (a) pi/2 (b) pi/3 (c) pi (d) pi/4

The angle between the tangents to the parabola y^2=4a x at the points where it intersects with the line x-y-a=0 is (a) pi/3 (b) pi/4 (c) pi (d) pi/2

The angle between the tangents to the parabola y^2=4a x at the points where it intersects with the line x-y-a=0 is (a) pi/3 (b) pi/4 (c) pi (d) pi/2