Home
Class 12
MATHS
The minimum value of 2^sinx+2^cosx...

The minimum value of `2^sinx+2^cosx `

Text Solution

Verified by Experts

Using `A.M. ge G.M`., we have
`2^(sin x)+2^(cosx) ge 2sqrt(2^sinx 2^cos x)=2sqrt(2^(sinx+cosx))`
Now we know that
`sin x +cos x ge -sqrt(2)`
`rArr 2^(sinx)+2^(cos x) ge 2sqrt(2^-sqrt(2))`
Hence, the minimum value of `2^sinx +2^cosx is 2(1(1)/(sqrt(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the minimum value of |[sin x ,cosx], [-cosx, 1+ sinx]| ?

Minimum value of 2^(sinx)+2^(cosx) is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is