Home
Class 12
MATHS
" For the matrix "A=[[1,-1],[2,3]]," Pro...

" For the matrix "A=[[1,-1],[2,3]]," Prove that "A^(2)-4A+51=0." Hence find "A^(-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

For the matrix A=[{:(2,3),(1,2):}] , show that A^2-4A+I_2=0 . Hence, find A^(-1)

For the matrix A=[[2,31,2]] show that A^(2)-4A+I=0 Hence find A^(-1)

For the matrix A=[[3,17,5]], find x and y sot that A^(2)+xI+yA=0 Hence,Find A^(-1)

For the matrix A = {:[(1,-1),(3,2)] , show that A^2-4A+7I=O . Hence, obtain A^-1 .

If A=[(3,2),(2,1)] verify that A^2-4A-I=0 . Hence find A^(-1)

For the matrix A=[{:(1,2,2),(2,1,2),(2,2,1):}] . Show that A^2-4A-5I=0 Hence find A^(-1)

For the matrix A=[[1,1,11,2,-32,1,3]]*A^(3)-6A^(2)+5A+11I=0. Hence,find

For the matrix A= [[1,1,1],[1,2,-3],[2,-1,3]] show that A^3-6A^2+5A+11I=0. Hence, find A^(-1)