Home
Class 12
MATHS
" Q.10If "y=[x+sqrt(x^(2)+1)]^(m)" ,show...

" Q.10If "y=[x+sqrt(x^(2)+1)]^(m)" ,show that "(x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = (x+ sqrt(x ^(2) -1))^(m) then (x ^(2) -1) y_(2) + xy _(1)=

" 1(a) If "y=e^(a sin^(-1)x)" ,show that "(1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

If x=sin((1)/(a)log y), show that (1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If x=sin((1)/(a)log y), show that (1-x^(2))y_(2)-xy_(1)-a^(2)y=0

y=[log(x+sqrt(x^(2)+1))]^(2) then prove that (x^(2)+1)y_(2)+xy_(1)=2

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

If y={x+sqrt(x^2+1)}^m , show that (x^2+1)y_2+x y_1-m^2\ y=0

If y=sin^(-1)x/sqrt(1-x^(2)) show that (1-x^(2))y_(2)-3xy_(1)-y=0 .

If y= [Log(x+sqrt(x^2+1))]^2 then show that (x^2+1)y_2+xy_1=0