Home
Class 12
MATHS
(u)(2x^(2)+3)^(5/3)(x+5)^(-1/2)...

(u)(2x^(2)+3)^(5/3)(x+5)^(-1/2)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(2x^(2)+3)^(5/3)(x+5)^((-1)/3)

Take away: (6)/(5)x^(2)-(4)/(5)x^(3)+(5)/(6)+(3)/(2)x om (x^(3))/(3)-(5)/(2)x^(2)+(3)/(5)x+(1)/(4)

Take away ((8)/(5)x^(2) - (2)/(3)x^(3) + (3)/(2)x -1) from ((x^(3))/(5) - (3)/(2)x^(2) + (2)/(3)x + (1)/(4))

int(x+(1)/(x))^(3/2)((x^(2)-1)/(x^(2)))dx is equal to (A) (1)/(3)(x+(1)/(x))^(3)+C (B)(2)/(5)(x+(1)/(x))^(5/2)

Find the LCM and HCF of the following polynomials 36(x +2)^(2) (x-1)^(3) (x +3)^(5), 45 (x +2)^(5) (x -1)^(2) (x +3)^(5) and 63 (x -1)^(5) (x +2)^(5) (x +3)^(4)

If u=sin^(-1)(x-y),x=3t,y=4t^(3) , then what is the derivative of u with respect to t? (A) 3(1-t^2) (B) 3(1-t^2)^(-1/2) (C) 5(1-t^2)^(-1/2) (D) 5(1-t^2)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.

Check whether the following are quadratic equations : (1) (x-3)^(2)=x(2x-5) (2) (2x-3)(8x+1) = (4x+5)(4x-5) (3) (5x+3)(x-2)=(4x+3)(2x-1) (4) (2x+5)^(3)=8(x-1)^(3) (5) x^(2)+7x-8=x(x+5) (6) x^(3)+9x^(2)-7x+2=(x+3)^(3)

Find (dy)/(dx) if y=((5x-1)^(2/3)(2x-5)^(3/5))/((x-1)^(1/3)(3x-2)^3)