Home
Class 12
MATHS
If y=(sin x) ^(sin x ^sin x ....oo) then...

If `y=(sin x) ^(sin x ^sin x ....oo)` then prove that `dy/dx=(y^2 cot x)/(1-y log (sin x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Ify=(sin x)^(sin x)sim((sin x)...oo), Then prove that (dy)/(dx)=(y^(2)cot x)/(1-y log sin x)

If y=(sin x)^(sin x)sim((sin x)dot oo)), prove that (dy)/(dx)=(y^(2)cot x)/((1-y log sin x))

If y = (sin x) ^((sin x) ^((sin x) ^(...oo))), then (dy)/(dx)=

If y=(sin x)^((sin x))srove that (dy)/(dx)=(y^(2)cos x)/((1-y log sin x))

If y=sqrt(sin x+sqrt(sin x +sqrt(sin x+....oo))) " then prove that " dy/dx = cos x /(2y-1).

If (sin x)^(y)=x+y, prove that (dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)

If (sin x)^(y)=x+y, prove that(dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]