Home
Class 12
MATHS
[" (i) If A is not an integral maltiple ...

[" (i) If A is not an integral maltiple of "R" ,pove that "],[cos A*cos2A*cos4A cos8A=(sin16A)/(16sin A)" and bence deduce that "],[cos(2 pi)/(15),cos(4 pi)/(15),cos(8 pi)/(15)*cos(16 pi)/(15)=(1)/(16)]

Promotional Banner

Similar Questions

Explore conceptually related problems

cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos"(16pi)/(15)=(1)/(16)

Prove that cos(2 pi)/(15)cos(4 pi)/(15)cos(8 pi)/(15)cos(14 pi)/(15)=(1)/(16)

cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)

If A is not an integral multiple of (pi) , prove that cos A cos 2A cos 4A cos 8A =(sin 16A)/(16 sin A) Hence deduce that cos. (2pi)/(15). Cos. (4pi)/(15) .cos. (8pi)/(18). Cos. (16pi)/(15)=(1)/(16)

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1/(16)

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1/(16)

cos""(2pi)/(15) cos ""(4pi)/(15)""cos(8pi)/(15) cos""(16pi)/(15)=