Home
Class 11
MATHS
cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/...

cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(2)48^(@)-sin^(2)12^(@)=((sqrt5+1))/(8) .

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

cos^(2)48^(0)-sin^(2)12^(0) is

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

I : sin^(2) 42^(@) - sin^(2) 12^(@)=(sqrt(5)+1)/(8) II : 8 cos^(3) 10^(@) - 6 cos10^(@)= sqrt(3)

cos ^(2) 48^(@) - sin ^(2) 12 ^(@) = (sqrt5+1)/(8).

Prove that: sin^(2)42^(2)-cos^(2)78^(@)=(sqrt(5)+1)/(8)

Prove that cos^2 48^@-sin^2 12^@=((sqrt5+1))/8

Prove that: cos^2 48^0-sin^2 12^0=(sqrt(5)+1)/8