Home
Class 11
PHYSICS
" ExAMPLE "9" Prove that "((2n)!)/(n!)=2...

" ExAMPLE "9" Prove that "((2n)!)/(n!)=2^(n)times{1times3times5times...times(2n-1)}

Promotional Banner

Similar Questions

Explore conceptually related problems

Proove that (n+2)xx(n!)=(n!)+(n+1)!.

Prove that ((2n)!)/(n!) =2^(n) xx{1xx3xx5xx...xx(2n-1)}.

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

(5^(n+3)-6times5^(n+1))/(9times5^(n)-2^(2)times5^(n))

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

(2^(n+3)-10times2^(n+1))/(2^(n+1)times6)=

Prove 'that 10^n+3 xx 4^(n+2)+5 is divisible by 9 .

1xx3xx5xx7xx9xx...xx(2n-1)=

lim_(x->oo) [(1)/(1times2)+(1)/(2times3)+(1)/(3times4)+.....+(1)/(n(n+1))]

Prove that 1^(1)xx2^(2)xx3^(3)xx xx n^(n)<=[(2n+1)/3]^(n(n+1)/2),n in N