Home
Class 12
MATHS
(sqrt(3+4i)-sqrt(3-4i))/(sqrt(3+4i)+sqrt...

(sqrt(3+4i)-sqrt(3-4i))/(sqrt(3+4i)+sqrt(3-4i))=

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(4i) =

Show that (i)" "{((3+2i))/((2-3i))+((3-2i))/((2+3i))} is purely real, (ii)" "{((sqrt(7)+i sqrt(3)))/((sqrt(7)-i sqrt(3)))+((sqrt(7)- i sqrt(3)))/((sqrt(7) + i sqrt(3)))} is purely real.

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

((3+i sqrt(3))(3-i sqrt(3)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

If i=sqrt(-)1, then 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365) is equal to (1)1-i sqrt(3)(2)-1+i sqrt(3)(3)i sqrt(3)(4)-i sqrt(3)

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

(sqrt(3)+i sqrt(2))(sqrt(2)+i sqrt(3))= ..........

((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))