Home
Class 11
MATHS
(1)/(log(4)(x+1)/(x+2))<(1)/(log(4)(x+3)...

(1)/(log_(4)(x+1)/(x+2))<(1)/(log_(4)(x+3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_((1)/(8))(log_((1)/(4))(log_((1)/(2))x))=(1)/(3)th n x is

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

The smallest integral x satisfying the inequality (1-log_(4)x)/(1+log_(2)x)le (1)/(2)x is.

Solve for x:(log)_(4)(x^(2)-1)-(log)_(4)(x-1)^(2)=(log)_(4)sqrt((4-x)^(2))

int(ln((x-1)/(x+1)))/(x^(2)-1)dx is equal to (a) (1)/(2)(ln((x-1)/(x+1)))^(2)+C(b)(1)/(2)(ln((x+1)/(x-1)))^(2)+C(c)(1)/(4)(ln((x-1)/(x+1)))^(2)+C(d)(1)/(4)(ln((x+1)/(x-1)))^(2)+C

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

If (log_(2)(4x^(2)-x-1))/(log_(2)(x^(2)+1))>1, then x may be

Find the integral int(1)/(4x^(2)+12x+5)dx A. (1)/(4)log|(2x+1)/(2x-5)|+C B. (1)/(8)log|(1+2x)/(5-2x)|+C C. (1)/(8)log|(2x-1)/(2x+5)|+C D. (1)/(4)log|(1-2x)/(5+2x)|+C

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2