Home
Class 12
MATHS
[" The sum of "n,2n," 3n terms of an "A....

[" The sum of "n,2n," 3n terms of an "A.P" ,are "S_(1),S_(2),S_(3)" respectively.Prove that "],[S_(3)=3(S_(2)-S_(1))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of n,2n,3n terms of an AP are S_(1),S_(2),S_(3) respectively.Prove that S_(3)=3(S_(2)-S_(1))

The sums of n, 2n , 3n terms of an A.P. are S_(1) , S_(2) , S_(3) respectively. Prove that : S_(3) = 3 (S_(2) - S_(1) )

The sum of first n, 2n and 3n terms of an A.P. are S_(1), S_(2), S_(3) respectively. Prove that S_(3)=3(S_(2)-S_(1)) .

Let sum of n , 2n , 3n , terms of an A.P are S_(1), S_(2), S_(3) respectively. Prove that S_(3) = 3 (S_(2) - S_(1)) .

Let the sum of n, 2n, 3n terms of an A.P. be S_(1), S_(2) and S_(3) respectively. Show that S_(3) = 3(S_(2) - S_(1)) .

If the sum of n , 2n , 3n terms of an AP are S_1,S_2,S_3 respectively . Prove that S_3=3(S_2-S_1)

The sum of n ,2n ,3n terms of an A.P. are S_1S_2, S_3, respectively. Prove that S_3=3(S_2-S_1)dot

The sum of n ,2n ,3n terms of an A.P. are S_1S_2, S_3, respectively. Prove that S_3=3(S_2-S_1)dot

If the sums of n, 2n and 3n terms of an A.P. be S_(1), S_(2), S_(3) respectively, then show that, S_(3) = 3(S_(2) - S_(1)) .