Home
Class 12
MATHS
" 7."(x-1)/(sqrt(x^(2)-1))...

" 7."(x-1)/(sqrt(x^(2)-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1)/(2)(sqrt(7)+(1)/(sqrt(7))) ,then , log_(27)((sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))) is equal to

int(1)/(sqrt(x^(2)+7))dx

Integrate the functions (1.)(sec)^(2)(7-4x) (2.) (sin^(-1)x)/(sqrt(1-x^(2)))

Simplify : (x+sqrt(x^(2)-1))^(7) + (x-sqrt(x^(2)-1))^(7)

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

lim_(x rarr-oo)(x^(2)*tan((1)/(x)))/(sqrt(8x^(2)+7x+1)) is

Find the integral of (1)/(sqrt(a^(2)-x^(2)) with respect to x and hence find int (1)/(sqrt(7-6x-x^(2))dx

Find the integral of (1)/(sqrt(a^(2)-x^(2)) with respect to x and hence find int(1)/(sqrt(7-6x-x^(2))dx

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these