Home
Class 8
MATHS
sqrt((1+sin theta)/(1-sin theta))" is eq...

sqrt((1+sin theta)/(1-sin theta))" is equals to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta lies in the second quadrant. Then the value of sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

If theta lies in the second quadrant. Then the value of sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

If pi/2 < theta < pi, then sqrt((1- sin theta)/(1+ sin theta))+sqrt((1+ sin theta)/(1- sin theta)) is equal to

If theta lies in the second quadrant, then sqrt((1-sintheta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

sqrt((1 + sin theta)/(1 - sin theta)) is equal to ______

If (pi)/(2)

If pi/2 lt theta lt (3pi)/2 , then sqrt((1-sin theta)/(1+sin theta)) is equal to

If (pi)/(2)