Home
Class 11
MATHS
log(x^(2))(4x-5)/(|x-2|)>=(1)/(2)...

log_(x^(2))(4x-5)/(|x-2|)>=(1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)(x^(2)-4x+5)=(x-2)

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

The possible value of x satisfying the equation log_(2)(x^(2)-x)log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is

If (log_(2)(4x^(2)-x-1))/(log_(2)(x^(2)+1))>1, then x may be

Solve for x:|log^(2)(4-x)+log(4-x)*log(x+(1)/(2))-2log^(2)(x+(1)/(2))=

Solve the equation log_((x^(2)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)

The number of value of x satisfying 1+log_(5)(x^(2)+1)>=log_(5)(x^(2)+4x+1) is

Solve the equation,log_(x^(2)+4x+5){log_(3x^(2)+4x+5)(x^(2)-3x)}=0

(log_(2)x)^(4)-(log_((1)/(2))((x^(5))/(4)))^(2)-20log_(2)x+148<0