Home
Class 12
MATHS
" The matrix "A=[[i,1-2i],[-1-2i,0]]," w...

" The matrix "A=[[i,1-2i],[-1-2i,0]]," where "i=sqrt(-1)," is "

Promotional Banner

Similar Questions

Explore conceptually related problems

1,1+i,2i,-2+2i,"…."where i= sqrt(-1)

If A=[[0,0],[0,i]], where i=sqrt(-1), then

Verify that the matrix equation A^2 - 4a +3I =0 is satisfied by the matrix A = [[2,-1],[-1,2]] , where I = [[1,0],[0,1]] and 0= [[0,0],[0,0]] ,

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If A={:[(1+i,-i),(i,1+i)]:}," where "i=sqrt(-1)," and "A^(2)-2A+I=0," then ":A^(-1)=

If A=[[0,1+2i,i-2],[-1-2i,0,-7],[2-I,7,0]] ,where i=sqrt-1 ,prove that A^T=-A

Verify A(adjA)=(adjA)A=abs[A]I for the matrix A=[[5,-2],[3,-2]] that,where I=[[1,0],[0,1]]