Home
Class 11
MATHS
" 3.If "(1)/(b-a)+(1)/(b-c)=(1)/(a)+(1)/...

" 3.If "(1)/(b-a)+(1)/(b-c)=(1)/(a)+(1)/(c)," then "a,b,c" are in "H.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/(b-a)+ (1)/(b-c) = (1)/(a) +(1)/(c ) then prove that a, b,c are in H.P

If (1)/(a)+(1)/(a-2b)+(1)/(c)+(1)/(c-2b)=0 and a,b,c are not in A.P.then

If 1/(b-a)+1/(b-c)=1/a+1/c , then A. a ,b ,a n dc are in H.P. B. a ,b ,a n dc are in A.P. C. b=a+c D. 3a=b+c

If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a ,b ,a n dc are in A.P. (C). b=a+c (D). 3a=b+c

If 1/(b-a)+1/(b-c)=1/a+1/c , then A. a ,b ,a n dc are in H.P. B. a ,b ,a n dc are in A.P. C. b=a+c D. 3a=b+c

If a ((1)/(b) + (1)/(c )), b ((1)/(c )+ (1)/(a)), c ((1)/(a) + (1)/(b)) are in A.P., then

If (1)/(b+c),(1)/(c+a),(1)/(a+b) are in A.P.then

If a((1)/(b)+(1)/(c)),b((1)/(c)+(1)/(a)),c((1)/(a)+(1)/(b)) are in A.P.prove that a,b,c are in A.P.

If 1/(a+b),1/(b+c),1/(c+a) are in A.P., then c^2,a^2,b^2 are in A.P.