Home
Class 8
MATHS
[169^(-3)/((196)^(-8))]^(1/48)=...

`[169^(-3)/((196)^(-8))]^(1/48)=`

A

`14^(1/3)/13^(1/8)`

B

`14^((-1)/3)/13^((-1)/8)`

C

`13^(1/8)/14^(1/3)`

D

`14^(1/8)/13^(1/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \([169^{-3}/(196)^{-8}]^{1/48}\), we can follow these steps: ### Step 1: Rewrite the bases in terms of their prime factors We know that: - \(169 = 13^2\) - \(196 = 14^2\) So we can rewrite the expression: \[ 169^{-3} = (13^2)^{-3} = 13^{-6} \] \[ 196^{-8} = (14^2)^{-8} = 14^{-16} \] ### Step 2: Substitute the rewritten bases into the expression Now substitute these back into the original expression: \[ \left[\frac{13^{-6}}{14^{-16}}\right]^{1/48} \] ### Step 3: Apply the property of negative exponents Using the property \(\frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}\), we can rewrite the fraction: \[ \frac{13^{-6}}{14^{-16}} = 13^{-6} \cdot 14^{16} \] Thus, the expression becomes: \[ \left[14^{16} \cdot 13^{-6}\right]^{1/48} \] ### Step 4: Apply the exponent to both the numerator and denominator Using the property \((a \cdot b)^m = a^m \cdot b^m\): \[ = \left(14^{16}\right)^{1/48} \cdot \left(13^{-6}\right)^{1/48} \] \[ = 14^{\frac{16}{48}} \cdot 13^{\frac{-6}{48}} \] ### Step 5: Simplify the exponents Now simplify the fractions: \[ = 14^{\frac{1}{3}} \cdot 13^{-\frac{1}{8}} \] ### Step 6: Rewrite the expression This can be rewritten as: \[ = \frac{14^{\frac{1}{3}}}{13^{\frac{1}{8}}} \] ### Final Answer Thus, the final simplified expression is: \[ \frac{14^{\frac{1}{3}}}{13^{\frac{1}{8}}} \]

To solve the expression \([169^{-3}/(196)^{-8}]^{1/48}\), we can follow these steps: ### Step 1: Rewrite the bases in terms of their prime factors We know that: - \(169 = 13^2\) - \(196 = 14^2\) So we can rewrite the expression: ...
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION LEVEL 2|20 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION LEVEL 3|7 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Essay Type|5 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 1)|60 Videos
  • LINEAR EQUATIONS AND INEQUATIONS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL - 3)|9 Videos

Similar Questions

Explore conceptually related problems

(48)^(-(2)/(7))xx(16)^(-(5)/(7))xx(3)^(-(5)/(7))=?(1)/(3) b.(1)/(48)c1d.48

2(3)/(4)-:2(2)/(3)-:1(1)/(12)=?(39)/(48) (b) 1(1)/(4) (c) (169)/(144) (d) None of these

(1250)^((1)/(4))*8^((1)/(4))*(75)^((1)/(3))*3sqrt(48) is simplified then the resultant

Solve ((5.9)^(3)+(1.8)^(3)+(4.8)^(3)-3xx5.9xx1.8xx4.8)/((5.9)^(2)+(1.8)^(2)+(4.8)^(2)-5.9xx1.8-1.8xx4.8-4.8xx5.9)

2^(1/4). 4^(1/16). 8^(1/48) .........oo =

Factorise (64)/(125)a^3-(96)/(25)a^2+(48)/(5)a-8

Simplify : sqrt((169p^(3)q^(3))/(225 pq^(4)))

(13)/(48) is equal to (1)/(3+(1)/(1+(1)/(16))) (b) (1)/(2+(1)/(1+(1)/(8)))(c)(1)/(3+(1)/(1+(1)/(1+(1)/(8))))(d)(1)/(3+(1)/(1+(1)/(2+(1)/(2))))

From a well shuffled deck of cards, 2 cards are drawn with replacement. If x represent numbers of time ace coming, then the value of P(x=1)+P(x=2) is (a) (25)/(169) (b) (24)/(169) (c) (49)/(169) (d) (23)/(169)

7^( 8.9)div(343)^(1.7)xx(49)^(4.8)=7^(?)