Home
Class 8
MATHS
If 7^(n)=2401, then 7^(n-5)=...

If `7^(n)=2401`, then `7^(n-5)=`

A

1

B

`1/7`

C

7

D

49

Text Solution

Verified by Experts

The correct Answer is:
B

Find the value of n.
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION LEVEL 2|20 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION LEVEL 3|7 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Essay Type|5 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 1)|60 Videos
  • LINEAR EQUATIONS AND INEQUATIONS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL - 3)|9 Videos

Similar Questions

Explore conceptually related problems

If nP_(7)=42nP:_(5) then n=

If N_(a)={an:ninN} , then N_(5) nn N_(7) equals

If .^(n)C_(5) = .^(n)C_(7) , then find .^(n)P_(3)

If ""^(n)C_(7)= ""^(n)C_(5) , then ""C_(4)= ………….

If n in N , then 3^(2n)+7 is divisible by

C(n,7)=C(n,5)

.If sqrt(2401)=sqrt(7^(x)) ,then the value of x

Let S_(n)=sum_(r+1)^(n)r!(n>6), then S_(n)-7[(S_(n))/(7)] (where [.] denotes the greatest integer function) is equal to (A) [(n)/(7)](B)n!-7[(n-1)/(7)](C)5(D)3