Home
Class 8
MATHS
4xx(256)^((-1)/4) div (243)^(1/5)=...

`4xx(256)^((-1)/4) div (243)^(1/5)=`

A

`1/3`

B

`4/3`

C

`3/4`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 4 \times (256)^{-\frac{1}{4}} \div (243)^{\frac{1}{5}} \), we will follow these steps: ### Step 1: Rewrite the numbers in terms of their prime factors. - \( 4 = 2^2 \) - \( 256 = 2^8 \) (since \( 256 = 2^8 \)) - \( 243 = 3^5 \) (since \( 243 = 3^5 \)) ### Step 2: Substitute these values into the expression. The expression now becomes: \[ 2^2 \times (2^8)^{-\frac{1}{4}} \div (3^5)^{\frac{1}{5}} \] ### Step 3: Simplify the powers using the power of a power property. Using the property \( (a^m)^n = a^{m \cdot n} \): - \( (2^8)^{-\frac{1}{4}} = 2^{8 \cdot -\frac{1}{4}} = 2^{-2} \) - \( (3^5)^{\frac{1}{5}} = 3^{5 \cdot \frac{1}{5}} = 3^1 = 3 \) Now the expression becomes: \[ 2^2 \times 2^{-2} \div 3 \] ### Step 4: Combine the powers of 2. Using the property \( a^m \times a^n = a^{m+n} \): \[ 2^2 \times 2^{-2} = 2^{2 - 2} = 2^0 = 1 \] ### Step 5: Substitute back into the expression. Now we have: \[ 1 \div 3 \] ### Step 6: Simplify the division. The final result is: \[ \frac{1}{3} \] Thus, the answer to the expression \( 4 \times (256)^{-\frac{1}{4}} \div (243)^{\frac{1}{5}} \) is \( \frac{1}{3} \). ---

To solve the expression \( 4 \times (256)^{-\frac{1}{4}} \div (243)^{\frac{1}{5}} \), we will follow these steps: ### Step 1: Rewrite the numbers in terms of their prime factors. - \( 4 = 2^2 \) - \( 256 = 2^8 \) (since \( 256 = 2^8 \)) - \( 243 = 3^5 \) (since \( 243 = 3^5 \)) ### Step 2: Substitute these values into the expression. ...
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION LEVEL 2|20 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION LEVEL 3|7 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Essay Type|5 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 1)|60 Videos
  • LINEAR EQUATIONS AND INEQUATIONS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL - 3)|9 Videos

Similar Questions

Explore conceptually related problems

Simplify each of the following: (i) (16)^((1)/(5))xx(2)^((1)/(5)) (ii) ((243)^((1)/(4)))/((3)^((1)/(4)))

1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243)^(-1/5) is equal to:

Simplify: (4)/((216)^(-(2)/(3)))+(1)/((256)^(-(3)/(4)))+(2)/((243)^(-(1)/(5)))

Simplify: (i) (2 ^(-1) xx 5 ^(-1)) ^(-1) div 4 ^(-1) (ii) (4 ^(-1)+ 8 ^(-1)) div ((2)/(3)) ^(-1)

Prove that . (i) [8^(-(2)/(3)) xx 2^((1)/(2))xx 25^(-(5)/(4))] div[32^(-(2)/(5)) xx 125 ^(-(5)/(6)) ] = sqrt(2) (ii) ((64)/(125))^(-(2)/(3)) = (1)/(((256)/(625))^((1)/(4)))+ (sqrt(25))/(root3(64)) = (65)/(16) (iii) [7{(81)^((1)/(4)) +(256)^((1)/(4))}^((1)/(4))]^(4) = 16807 .

(1) (4)/((216)^((2)/(3)))+(1)/((256)^((3)/(4)))+(2)/((243)^((1)/(5))) (ii) ((64)/(125))^((2)/(3))+((256)/(625))^((1)/(4))+((3)/(7))^(0) (iii) ((81)/(16))^((3)/(4))(((25)/(9))^((3)/(2))-:((5)/(2))^(-3)) (iv) ((25)^((5)/(2))times(729)^((1)/(3)))/((125)^((2)/(3))times(27)^((2)/(3))times8^((4)/(3)))

4(1)/(2)xx4(1)/(3)-8(1)/(3)div5(2)/(3)=?

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12