Home
Class 11
MATHS
" Fiv) "tan-1{(sqrt(1+x^(2))-1)/(x)},x!=...

" Fiv) "tan-1{(sqrt(1+x^(2))-1)/(x)},x!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following functions with respect to x:tan^(-1){sqrt(1+x^(2))-x},x in R (ii) tan^(-1){(sqrt(1+x^(2))-1)/(x)},x!=0

Write each of the following in the simplest form: tan^(-1){sqrt(1+x^(2))-x},x in R (ii) tan^(-1){(sqrt(1+x^(2))-1)/(x)},x!=0

tan[(sqrt(1+x^(2))-1)/x] =

Differentiate the following functions with respect to x : (i) tan^(-1){sqrt(1+x^2)-x} , x in RR (ii) tan^(-1){(sqrt(1+x^2)-1)/x},\ \ x!=0

Write each of the following in the simplest form: tan^(-1){sqrt(1+x^2)-x},\ \ x in R (ii) tan^(-1){(sqrt(1+x^2)-1)/x},\ \ x!=0

Differentiate the functions with respect to x : tan^(-1){(sqrt(1+a^2x^2)-1)/(a x)},x!=0

tan^(-1)(x+sqrt(1+x^(2)))=

Find the simplest value of f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x)),x in R-{0}

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)