Home
Class 12
MATHS
If f(x+y)=f(x)dotf(y) for all real x , y...

If `f(x+y)=f(x)dotf(y)` for all real `x , ya n df(0)!=0,` then prove that the function `g(x)=(f(x))/(1+{f(x)}^2)` is an even function.

Text Solution

Verified by Experts

Given `f(x+y)=f(x)*f(y). " (1) " `
Put `x=y=0. ` Then `f(0)=1.`
Putting `y= -x` in (1), we get
`f(0)=f(x)f(-x)`
or ` f(-x)=`
Now, `g(x)=`
` :. g(-x)=(f(-x))/(1+{f(-x)}^(2))=((1)/(f(x)))/(1+(1)/({f(x)}^(2)))=(f(x))/(1+{f(x)}^(2))=g(x)`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.1|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.2|5 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x+y)=f(x)*f(y) for all real x,y and f(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^(2)) is an even function.

If f(x+y)=f(x).f(y) for all real x,y and f(0)!=0, then the function g(x)=(f(x))/(1+{f(x)}^(2)) is:

Let f(x+y)=f(x)*f(y)AA x,y in R and f(0)!=0* Then the function phi defined by .Then the function phi(x)=(f(x))/(1+(f(x))^(2)) is

Let f(x+y)=f(x)+f(y) for all real x,y and f'(0) exists.Prove that f'(x)=f'(0) for all x in R and 2f(x)=xf(2)

A function f:R rarr R satisfies that equation f(x+y)=f(x)f(y) for all x,y in R ,f(x)!=0. suppose that the function f(x) is differentiable at x=0 and f'(0)=2. Prove that f'(x)=2f(x)

if f(x+y)=f(x)+f(y)+c, for all real x and y and f(x) is continuous at x=0 and f'(0)=-1 then f(x) equals to

If f(x+y)=f(x)dotf(y),\ AAx in R\ a n df(x) is a differentiability function everywhere. Find f(x) .

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AA x,y in R and f(0)!=0 ,then f(x) is an even function f(x) is an odd function If f(2)=a, then f(-2)=a If f(4)=b, then f(-4)=-b

CENGAGE-RELATIONS AND FUNCTIONS-Solved Examples And Exercises
  1. If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that ...

    Text Solution

    |

  2. Find the inverse of the function: f:(-oo,1] rarr [1/2,oo],w h e r ef(...

    Text Solution

    |

  3. Find the value of x for which function are identical. f(x)=xa n dg(x)=...

    Text Solution

    |

  4. Find the value of x for which function are identical. f(x)=cosxa n dg(...

    Text Solution

    |

  5. Find the value of x for which function are identical. f(x)=(sqrt(9-x^2...

    Text Solution

    |

  6. Find the inverse of the function: f: R rarr (-oo,1)gi v e nb yf(x)=1-...

    Text Solution

    |

  7. f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the g...

    Text Solution

    |

  8. Find the inverse of the function: f(x)={x^3-1, ,x<2x^2+3,xgeq2

    Text Solution

    |

  9. Find the inverse of the function: f:[-1,1]rarr[-1,1]defined byf(x)=x|...

    Text Solution

    |

  10. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  11. Let f(x)=(9^x)/(9^x+3) . Show f(x)+f(1-x)=1 and, hence, evaluate. f(1/...

    Text Solution

    |

  12. If f(x+2a)=f(x-2a),t h e np rov et h a tf(x)i sp e r iod i cdot

    Text Solution

    |

  13. Let g(x) be a function such that g(a+b)=g(a)dotg(b)AAa , b in Rdot If...

    Text Solution

    |

  14. Find the value of x for which function are identical. f(x)=tan^(-1)x+t...

    Text Solution

    |

  15. The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in ...

    Text Solution

    |

  16. Plot y=|x|,y=|x-2|, and y=|x+2|

    Text Solution

    |

  17. If f(x+1/2)+f(x-1/2)=f(x)fora l lx in R , then the period of f(x) is ...

    Text Solution

    |

  18. If for all real values of ua n dv ,2f(u)cosv=(u+v)+f(u-v), prove that ...

    Text Solution

    |

  19. If the period of (cos(sin(n x)))/(tan(x/n)),n in N ,i s6pi , then n= ...

    Text Solution

    |

  20. If f: X rarr[1,oo) is a function defined as f(x)=1+3x^3, find the su...

    Text Solution

    |

  21. Find the period (if periodic) of the following function ([.] denotes ...

    Text Solution

    |