Home
Class 12
MATHS
Let f(x)={(x^(2)-4x+3",",x lt 3),(x-4","...

Let `f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):}`and
`g(x)={(x-3",",x lt 4),(x^(2)+2x+2",",x ge 4):}`.
Describe the function `f//g` and find its domain.

Text Solution

Verified by Experts

The correct Answer is:
`(f(x))/(g(x))={((x^(2)-4x+3)/(x-3)",",x lt 3),((x-4)/(x-3)",",3lt x lt 4),((x-4)/(x^(2)+2x+2)",",x ge 4):} `

`f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):}`
`={(x^(2)-4x+3",",x lt 3),(x-4",",3le x lt 4),(x-4",",x ge 4):} " (1)" `
`g(x)={(x-3",",x lt 4),(x^(2)+2x+2",",x ge 4):}`
`={(x-3",",x lt 3),(x-3",",3 le x lt 4),(x^(2)+2x+2",",x ge 4):} " (2)" `
From (1) and (2), we have
`(f(x))/(g(x))={((x^(2)-4x+3)/(x-3)",",x lt 3),((x-4)/(x-3)",",3lt x lt 4),((x-4)/(x^(2)+2x+2)",",x ge 4):} `
Clearly, `f(x)//g(x)` is not defined at `x=3`. Hence, the domain is `R-{3}.`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.4|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.5|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.2|5 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x^(2)-4x+3",", x lt 3),(x-4",", x ge 3):} and g(x)={{:(x-3",", x lt 4),(x^(2)+2x+2",", x le 4):} , which one of the following is/are true?

f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):} and g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):} . Then find g(f(x)).

Let f(x)={{:(x^(3)-1",", x lt2),(x^(2)+3"," , x ge 2):} Then

Let f(x)={x^2-4x+3, ,x<3x-4,xgeq3a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 Describe the function f/g and find its domain.

If f(x) ={(x^(3)", " x lt1),(2x-1", " x ge 1):} " and " g(x)={(3x", " x le2),(x^(2)", " x gt 2):} " then find " (f-g)(x).

Function f(x)={(x-1",",x lt 2),(2x-3",", x ge 2):} is a continuous function

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The domain of the function f(g(x)) is

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If a=2 and b=3, then the range of g(f(x)) is