Home
Class 12
MATHS
Find the domain of f(x)(sqrt((1-sinx)))...

Find the domain of `f(x)(sqrt((1-sinx)))/((log)_5(1-4)^2)+cos^(-1)(1-{x})dot`

Text Solution

Verified by Experts

The correct Answer is:
`(-1//2,1//2)-{0}`

(a) `1-sinx ge 0 " or " sin x le 1 " or " x in R`
(b) ` 1-4x^(2) gt 0 " or " x in (-1//2,1//2)`
(c ) `log_(5)(1-4x^(2)) ne 0 " or " 1-4x^(2) ne 1 " or " x ne 0`
(d) `-1 le 1-{x} le 1 " or " 0 le {x} le 2 " or " x in R`
Hence, domain is common values of (a),(b),(c) and (d),
i.e., `x in (-(1)/(2),(1)/(2))-{0}`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.11|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.8|9 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the domain of f(x)(sqrt((1-sin x)))/((log)_(5)(1-4x^(2)))+cos^(-1)(1-{x})

Find the domain of f(x)=(1)/(sqrt(|||x|-1||-5))

Find the domain of defination the following functions. f(x)=(sqrt(1-sin x))/(log_(5) (1-4x^(2))+cos^(-1) (1-{x}) . where {x} is the fractional part of x.

Find the domain of f(x) =sqrt(4-x) +1/sqrt(x^2 -1)

The domain of f(x)=sqrt(x-2)+(1)/(log(4-x)) is

Find the Domain of f(x)=(x-1)^(ln x)

Find the domain of f(x)=sqrt(log_(0.4)((x-1)/(x+5)))

Find the domain f(x)=sqrt(e^(cos-1(log_(1)x^(2))))

Find domain of f(x)=sqrt(log_((1)/(2))((5x-x^(2))/(4)))

Find the domain of f(x)=(1)/(sqrt(x-|x|))(b)f(x)=(1)/(log|x])f(x)=log{x}