Home
Class 12
MATHS
Find the period of (a) (|sin4x|+|cos ...

Find the period of
(a) `(|sin4x|+|cos 4x|)/(|sin 4x-cos 4x|+|sin 4x+cos 4x|)`
(b) `f(x)="sin"(pi x)/(n!)-"cos"(pi x)/((n+1)!)`
(c ) `f(x)=sin x +"tan"(x)/(2)+"sin"(x)/(2^(2))+"tan"(x)/(2^(3))+ ... +"sin"(x)/(2^(n-1))+"tan"(x)/(2^(n))`

Text Solution

Verified by Experts

The correct Answer is:
(a) `pi//8` (b) `2(n+1)!` (c ) `2^(n)pi`

Period of `|sin 4x|+|cos 4x|" is " (pi)/(8)`
Period of `|sin 4x-cos 4x|+|sin 4x+cos 4x|=(pi)/(8)`
So, the period of given function is `(pi)/(8).`
(b) `f(x)="sin"(pi)/(n!)-"cos"(pi x)/((n+1)!)`
Period of `"sin"(pi)/(n!) " is " (2pi)/((pi)/(n!))=2n!` and period of ` "cos"(pi x)/((n+1)!) " is " (2pi)/((pi )/((n+1)!))=2(n+1)!`
Hence, period of `f(x)=L.C.M" of "{2n!,29n+1)!}=2(n+1)!`
(c ) `f(x)=sin x +"tan"(x)/(2)+"sin"(x)/(2^(2))+"tan"(x)/(2^(3))+ ... +"sin"(x)/(2^(n-1))+"tan"(x)/(2^(n))`
Period of `sin x " is " 2pi.`
Period of ` "tan"(x)/(2) " is " 2pi.`
Period of ` "sin"(x)/(2^(2)) " is " 8pi.`
Period of ` "tan"(x)/(2^(3)) " is " 8pi`.
Period of `"tan"(x)/(2^(n)) " is " 2^(n) pi.`
Hence, period of `f(x)=L.C.M. " of " (2pi,8pi, ..., 2^(n) pi)=2^(n) pi`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.12|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.13|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.10|6 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the period of f(x)=sin x+tan(x)/(2)+sin(x)/(2^(2))+tan(x)/(2^(3))+...+sin(x)/(2^(n-1))+tan(x)/(2^(n))

The period of f(x)=sin((pi x)/(n-1))+cos((pi x)/(n)),n in Z,n>2

F(x)=(sin^(4)x+cos^(4)x)/(|sin x|-|cos x|) Find time period

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

The period of f(x)=(sin(pi x))/(2)+2(cos(pi x))/(3)-(tan(pi x))/(4) is

If 3sin x+4cos x=5, then 6(tan)(x)/(2)-9(sin)^(2)(x)/(2)=

Find sin 2x + cos 4x if tan 2x. Tan 4x = 1

(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x

2tan2x = (cos x + sin x) / (cos x-sin x) - (cos x-sin x) / (cos x + sin x)

(" sin 8x cos x- sin 6x cos 3x")/(" cos 2x cos x - sin 4x sin 3x")=