Home
Class 12
MATHS
If f: R^+vecR ,f(x)+3xf(1/x)=2(x+1),t h ...

If `f: R^+vecR ,f(x)+3xf(1/x)=2(x+1),t h e nfin df(x)dot`

Text Solution

Verified by Experts

The correct Answer is:
`f(x)=(x+1)//2`

`f(x)+3x f((1)/(x))=2(x+1) " (1)" `
Replacing `x` by `(1)/(x),` we get
`f((1)/(x))+3(1)/(x)f(x)=2((1)/(x)+1)`
or ` x f((1)/(x))+3f(x)=2(x+1) " (2)" `
From (1) and (2), we have `f(x)=(x+1)/(2).`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.15|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|125 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.13|7 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f:R^(+)rarr R,f(x)+3xf((1)/(x))=2(x+1), then find f(x)

If f:R^(+)rarr R such that f(x)+4xf((1)/(x))=3((x+1)/(x)) then f(x)

If 5f(x)+3f((1)/(x))=x+2 and y=xf(x) then find (dy)/(dx) at x=1

f(x)+4xf((1)/(x))-3((x+1)/(x))

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these

people living at Mars ,instead of the usual definition of derivative Df(x) define a new kind of derivative Df(x) by the formula Df(x)=lim_(h->0) (f^2(x+h)-f^2(x))/h where f^x means [f(x)]^2. If f(x)=xInx then Df(x)|_(x=e) has the value (a) e (b) 2e (c) 4e (d) non

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a)(f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c)f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

If f:R rarr R is a function such that f(x)=2^(x), find.(i) range of f( ii) (x:f(x)=1) (iii) f(x+y)=f(x)+f(y) is true or false.