Home
Class 12
MATHS
Consider f: R^+vecRs u c ht h a tf(3)=1 ...

Consider `f: R^+vecRs u c ht h a tf(3)=1` for `a in R^+a n df(x)dotf(y)+f(3/x)f(3/y)=2f(x y)AAx ,y in R^+dot` Then find `f(x)dot`

Text Solution

Verified by Experts

The correct Answer is:
`f(x)=1`

`f(x)*f(y)+f((3)/(x))f((3)/(y))=2f(xy)`
Put `x=y=1.` Then,
`f^(2)(1)+f^(2)(3)=2f(1)`
or `(f(1)-1)^(2)=0 " or "f(1)=1`
Now, put `y=1`. Then,
`f(x).f(1)+f((3)/(x))f(3)=2f(x)`
or `f(x)=f((3)/(x)) AA x gt 0 " (1)" `
or `f(x)f((3)/(x))+f((3)/(x)) f(x)=2f(3)`
or `f(x)f((3)/(x))=1 " (2)" `
Therefore, from (1) and (2),
`f^(2)(x)=1 AA x gt 0`
` :. f(x)=1AA x gt 0 " " ( :. f(3)=1)`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.15|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|125 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.13|7 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Consider f:R^(+)rarr R such that f(3)=1 for a in R^(+) and f(x)f(y)+f((3)/(x))f((3)/(y))=2f(xy)AA x,y in R^(+) Then find f(x)

Let f(x+y)+f(x-y)=2f(x)f(y)AA x,y in R and f(0)=k, then

Let f:R to R such that f(x+y)+f(x-y)=2f(x)f(y) for all x,y in R . Then,

If f((x+2y)/(3))=(f(x)+2f(y))/(3)AA x,y in R and f'(0)=1,f(0)=2 then find f(x) .

If a function f:R rarr R be such that f(x-f(y))=f(f(y))+xf(y)+f(x)-1AA x,y in R then f(2)=

Let f : R to R be a function such that f(0)=1 and for any x,y in R, f(xy+1)=f(x)f(y)-f(y)-x+2. Then f is

f((x)/(y))=f(x)-f(y)AA x,y in R^(+) and f(1)=1, then show that f(x)=In x

Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x) AA x , y in R. The minimum value of f(x) is