Home
Class 12
MATHS
Determine all functions f: Rvecs u c ht ...

Determine all functions `f: Rvecs u c ht h a tf(x-f(y))=f(f(y))+xf(y)+f(x)-1AAx , ygeq in Rdot`

Text Solution

Verified by Experts

The correct Answer is:
`f(x)=1-(x^(2))/(2)`

Given `f(x-f(y))=f(f(y))+xf(y)+f(x)-1 " (1) " `
Putting `x=f(y)=0,` we get `f(0)=f(0)+0+f(0)-1,` i.e.,
`f(0)=1 " (2)" `
Again, putting `x=f(y)= lambda` in (1), we get
`f(0)=f(lambda)+lambda^(2)+f(lambda)-1`
or `1=2f(lambda)+lambda^(2)-1 " [From (2)]" `
`f(lambda)=(2-lambda^(2))/(2)=1-(lambda^(2))/(2)`
Hence, `f(x)=1-(x^(2))/(2).`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.15|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|125 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.13|7 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Determine all functions f:R rarr R such that f(x-f(y))=f(f(y))+xf(y)+f(x)-1quad AA x,y>=0in R

If a function f:R rarr R be such that f(x-f(y))=f(f(y))+xf(y)+f(x)-1AA x,y in R then f(2)=

Let f be a function such that f(x+f(y))=f(f(x))+f(y) forall x, y in R and f(h)=h for 0 where epsilon >0 , then determine f'(x) and f(x).

Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f(a-y)+f(y)f(a-x), forall x,y in R , then for some real a,

Let f be a real function such that f(x-y), f(x)f(y) and f(x+y) are in A.P. for all x,y, inR. If f(0)ne0, then

Let f:R to R such that f(x+y)+f(x-y)=2f(x)f(y) for all x,y in R . Then,

If f(x) be a differentiable function for all positive numbers such that f(x.y)=f(x)+f(y) and f(e)=1 then lim_(x rarr0)(f(x+1))/(2x)

A function f: I to I, f(x + y) = f(x) + f(y) - 1/2 AAx, y in I , where f(1) > 0, then f(x) is

let f(x) be the polynomial function. It satisfies the equation 2 +f(x)* f(y) = f(x) + f(y) +f(xy) for all x and y. If f(2) =5 find f|f(2)| .