Home
Class 12
MATHS
Period of the function f(x)=sin((x)/(...

Period of the function
`f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))sin[(x)/(2)]`, where [.] denotes the greatest integer function, is _________.

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \sin\left(\frac{x}{2}\right) \cos\left(\left\lfloor \frac{x}{2} \right\rfloor\right) - \cos\left(\frac{x}{2}\right) \sin\left(\left\lfloor \frac{x}{2} \right\rfloor\right) \), we will follow these steps: ### Step 1: Simplify the Function We can use the sine subtraction formula: \[ \sin A \cos B - \cos A \sin B = \sin(A - B) \] Here, let \( A = \frac{x}{2} \) and \( B = \left\lfloor \frac{x}{2} \right\rfloor \). Thus, we can rewrite the function as: \[ f(x) = \sin\left(\frac{x}{2} - \left\lfloor \frac{x}{2} \right\rfloor\right) \] ### Step 2: Understand the Argument of the Sine Function The term \( \frac{x}{2} - \left\lfloor \frac{x}{2} \right\rfloor \) represents the fractional part of \( \frac{x}{2} \). The fractional part function, denoted as \( \{x\} \), is defined as: \[ \{x\} = x - \lfloor x \rfloor \] Thus, we have: \[ f(x) = \sin\left(\left\{\frac{x}{2}\right\}\right) \] ### Step 3: Determine the Period of the Fractional Part The fractional part function \( \{x\} \) has a period of 1. Therefore, the function \( \left\{\frac{x}{2}\right\} \) will have a period of: \[ \text{Period of } \left\{\frac{x}{2}\right\} = 2 \] This is because if \( x \) increases by 2, \( \frac{x}{2} \) increases by 1, which resets the fractional part. ### Step 4: Find the Period of \( f(x) \) Since \( f(x) = \sin\left(\left\{\frac{x}{2}\right\}\right) \) and the argument \( \left\{\frac{x}{2}\right\} \) has a period of 2, it follows that: \[ \text{Period of } f(x) = 2 \] ### Conclusion Thus, the period of the function \( f(x) \) is: \[ \boxed{2} \]

To find the period of the function \( f(x) = \sin\left(\frac{x}{2}\right) \cos\left(\left\lfloor \frac{x}{2} \right\rfloor\right) - \cos\left(\frac{x}{2}\right) \sin\left(\left\lfloor \frac{x}{2} \right\rfloor\right) \), we will follow these steps: ### Step 1: Simplify the Function We can use the sine subtraction formula: \[ \sin A \cos B - \cos A \sin B = \sin(A - B) \] Here, let \( A = \frac{x}{2} \) and \( B = \left\lfloor \frac{x}{2} \right\rfloor \). Thus, we can rewrite the function as: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise JEE Previous Year|12 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|498 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|9 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x)=cos|x|+[|(sin x)/(2)|], ,(where [.] denotes the greatest integer function),then f(x) is

f(x)=sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] where [.1 denotes the greatest integer function.

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

CENGAGE-RELATIONS AND FUNCTIONS-Exercise (Numerical)
  1. Suppose that f is an even, periodic function with period 2,a n dt h a ...

    Text Solution

    |

  2. If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 i...

    Text Solution

    |

  3. The function f(x)=(x+1)/(x^3+1) can be written as the sum of an even f...

    Text Solution

    |

  4. If T is the period of the function f(x)=[8x+7]+|tan2pix+cot2pix|-8x] (...

    Text Solution

    |

  5. An even polynomial function f(x) satisfies a relation f(2x)(1-f(1/(2x)...

    Text Solution

    |

  6. If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4=1, then (gof)(x...

    Text Solution

    |

  7. Let E={1,2,3,4,} and F={1,2}. Then the number of onto functions from E...

    Text Solution

    |

  8. The function of f is continuous and has the property f(f(x))=1-xdot Th...

    Text Solution

    |

  9. A function f from integers to integers is defined as f(n)={(n+3",",...

    Text Solution

    |

  10. If theta is the fundamental period of the function f(x) = sin^99 x+si...

    Text Solution

    |

  11. If x=4/9 satisfies the equation (log)a(x^2-x+2)>(log)a(-x^2+2x+3), the...

    Text Solution

    |

  12. If 4^x-2^(x+2)+5+||b-1|-3|-siny|, x , y , b in R , then the possible ...

    Text Solution

    |

  13. If f: N to N, and x(2) gt x(1) implies f(x(2)) gt f(x) AA x(1), x(2) i...

    Text Solution

    |

  14. The number of integral values of a for which f(x)="log"((log)(1/3)((lo...

    Text Solution

    |

  15. Let f(x)=sin^(23)x-cos^(22)xa n dg(x)=1+1/2tan^(-1)|x| . Then the numb...

    Text Solution

    |

  16. Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^...

    Text Solution

    |

  17. If f:(2,-oo) -> [8, oo) is a surjective function defined by f(x) = x^...

    Text Solution

    |

  18. Period of the function f(x)=sin((x)/(2))cos [(x)/(2)]-cos((x)/(2))s...

    Text Solution

    |

  19. If the interval x satisfying the equation [x] +[-x]=(log(3)(x-2))/(|...

    Text Solution

    |

  20. Let f(x) be a polynomial of degree 5 such that f(|x|)=0 has 8 real dis...

    Text Solution

    |