Home
Class 12
MATHS
Let f(x)=sin[pi/6sin(pi/2sinx)] for all ...

Let `f(x)=sin[pi/6sin(pi/2sinx)]` for all `x in RR`

A

Range of `f " is " [-(1)/(2),(1)/(2)]`

B

Range of fog is `[-(1)/(2),(1)/(2)]`

C

`underset(x to 0)(lim)(f(x))/(g(x))=(pi)/(6)`

D

There is an `x in R` such that `(gof)(x)=1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`f(x)=sin((pi)/(6) sin((pi)/(2)sinx))`
We know that `-1 le sinx le 1`
`implies -(pi)/(2) le (pi)/(2)sinx le (pi)/(2)`
`implies -1 le sin((pi)/(2)sinx) le 1`
`implies -(pi)/(6) le (pi)/(6) sin((pi)/(2) sinx) le (pi)/(6)`
`implies -(1)/(2) le sin((pi)/(6) sin((pi)/(2)sinx)) le (1)/(2)`
Now, `fog(x)=sin((pi)/(6) sin((pi)/(2)sin((pi)/(2)sinx)))-1 le sin((pi)/(2)sinx) le 1`
`implies (-pi)/(2) le (pi)/(2)(sin((pi)/(2)sinx)) le (pi)/(2)`
`implies -1 le sin ((pi)/(2)(sin((pi)/(2)sinx))) le 1`
`implies (-pi)/(6)le (pi)/(6) sin((pi)/(2)(sin((pi)/(2)sinx))) le (pi)/(6)`
`implies (-1)/(2) le f(x) le (1)/(2)`
Thus, range of fog is also `[-(1)/(2),(1)/(2)].`
Now, `underset(xto0)(lim)(sin((pi)/(6)((pi)/(2)sinx)))/((pi)/(2) sinx)`
`=underset(xto0)(lim)(2)/(pi)(sin((pi)/(6)((pi)/(2)sinx)))/((pi)/(6)sin((pi)/(2) sinx))xx((pi)/(6)((pi)/(2)sinx))/(( sinx)/(x)xx x)`
`underset(x to 0)(lim) (2)/(pi) xx (pi)/(6)xx(sin((pi)/(2) sinx))/((pi)/(2)sinx)xx((pi)/(2)sinx)/(x)`
`=(1)/(3)xx (pi)/(2)=(pi)/(6)`
`gof(x) in [-(pi)/(2) sin((1)/(2)),(pi)/(2)sin((1)/(2))]`
`implies gof(x) ne 1`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Solved Examples And Exercises|498 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|31 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin[(pi)/(6)sin((pi)/(2)sin x)] for all x in R

Let f(x)=sin((pi)/6sin((pi)/2 sin x)) for all x epsilonR and g(x)=(pi)/2sinx for all x epsilonR . Let (fog) (x) denote f(g(x)) and (g o f) denote g(f(x)). Then which the following is (are) true?

f(x)+sin xf(x+pi)=sin^(2)x

Let f(x)={-2sin x for -pi<=x<=-(pi)/(2)a sin x+b for -(pi)/(2)

The gratest value of the function f(x)=(sinx)/(sin(x+pi/4)) on thhe interval [0,pi//2] is

Consider a function fdefined by f(x)=sin^(-1)sin((x+sin x)/(2))AA x in[0,pi] which satisfies f(x)+f(2 pi-x)=pi AA x in[pi,2 pi] and f(x)=f(4 pi-x) for all x in[2 pi,4 pi] then If alpha is the length of the largest interval on which f(x) is increasing,then alpha=

Let f(x) = sin(pi[x]) + sin([pi^(2)]x) + cos ([-pi^(2)]x/3) AA x in R , then f(pi//4) is equal to

Let f(x)=x sin pi x,x>0 Then for all natural numbers n,f(x) vanishes at