Home
Class 12
MATHS
Computing area with parametrically repre...

Computing area with parametrically represented boundaries : If the boundary of a figure is represented by parametric equation, i.e., `x=x(t), y=(t),` then the area of the figure is evaluated by one of the three formulas :
`S=-int_(alpha)^(beta)y(t)x'(t)dt,`
`S=int_(alpha)^(beta)x(t)y'(t)dt,`
`S=(1)/(2)int_(alpha)^(beta)(xy'-yx')dt,`
Where `alpha and beta` are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t.
The area of the loop described as
`x=(t)/(3)(6-t),y=(t^(2))/(8)(6-t)` is

A

`(27)/(5)` sq. units

B

`(24)/(5)` sq. units

C

`(27)/(6)` sq. units

D

`(21)/(5)` sq. units

Text Solution

Verified by Experts

The correct Answer is:
A

`overset(6)underset(0)int((3)/(2)t^(2)-(1)/(2)t^(3)+(1)/(24)t^(4))dt=(3)/(2)xx(6^(3))/(3)xx(1)/(2)(6^(4))/(4)xx(1)/(24)(6^(5))/(5)`
`=(6^(3))/(2)-(6^(4))/(8)+(6^(4))/(20)`
`=6^(4)((1)/(12)-(1)/(8)+(1)/(20))`
`=(54)/(5)`.
`therefore" "(1)/(2)overset(6)underset(0)int(xy'-yx')dx=(1)/(2)xx(54)/(5)=(27)/(5)` sq. units.
Promotional Banner

Topper's Solved these Questions

  • AREA

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • AREA

    CENGAGE|Exercise Exercise (Numerical)|16 Videos
  • AREA

    CENGAGE|Exercise Exercise (Multiple)|10 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE|Exercise Question Bank|29 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

Computing area with parametrically represented boundaries : If the boundary of a figure is represented by parametric equation, i.e., x=x(t), y=(t), then the area of the figure is evaluated by one of the three formulas : S=-int_(alpha)^(beta)y(t)x'(t)dt, S=int_(alpha)^(beta)x(t)y'(t)dt, S=(1)/(2)int_(alpha)^(beta)(xy'-yx')dt, Where alpha and beta are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t. The area of the region bounded by an are of the cycloid x=a(t-sin t), y=a(1- cos t) and the x-axis is

Computing area with parametrically represented boundaries : If the boundary of a figure is represented by parametric equation, i.e., x=x(t), y=(t), then the area of the figure is evaluated by one of the three formulas : S=-int_(alpha)^(beta) y(t)x'(t)dt, S=int_(alpha)^(beta) x(t)y'(t)dt, S=(1)/(2)int_(alpha)^(beta)(xy'-yx')dt, Where alpha and beta are the values of the parameter t corresponding respectively to the beginning and the end of the traversal of the curve corresponding to increasing t. If the curve given by parametric equation x=t-t^(3), y=1-t^(4) forms a loop for all values of t in [-1,1] then the area of the loop is

Computing area with parametrically represented boundaries If the boundary of a figure is represented by parametric equations x = x (t) , y = y(t) , then the area of the figure is evaluated by one of the three formulae S = -int_(alpha)^(beta) y(t) x'(t) dt , S = int_(alpha)^(beta) x (t) y' (t) dt S = (1)/(2) int_(alpha)^(beta) (xy'-yx') dt where alpha and beta are the values of the parameter t corresponding respectively to the beginning and the end of traversal of the contour . The area of ellipse enclosed by x = a cos t , y = b sint (0 le t le 2pi)

Computing area with parametrically represented boundaries If the boundary of a figure is represented by parametric equations x = x (t) , y = y(t) , then the area of the figure is evaluated by one of the three formulae S = -int_(alpha)^(beta) y(t) x'(t) dt , S = int_(alpha)^(beta) x (t) y' (t) dt S = (1)/(2) int_(alpha)^(beta) (xy'-yx') dt where alpha and beta are the values of the parameter t corresponding respectively to the beginning and the end of traversal of the contour . The area enclosed by the astroid ((x)/(a))^((2)/(3)) + ((y)/(a))^((2)/(3)) = 1 is

If y=sqrt((t-alpha)/(beta-t)) and x=sqrt((t-alpha)(beta-t)) then find (dy)/(dx)

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

CENGAGE-AREA-Exercise (Comprehension)
  1. Let A(r) be the area of the region bounded between the curves y^(2)=(e...

    Text Solution

    |

  2. If y=f(x) is a monotonic function in (a,b), then the area bounded by t...

    Text Solution

    |

  3. If y=f(x) is a monotonic function in (a,b), then the area bounded by t...

    Text Solution

    |

  4. If y=f(x) is a monotonic function in (a,b), then the area bounded by t...

    Text Solution

    |

  5. Consider the area S(0),S(1),S(2)…. bounded by the x-axis and half-wave...

    Text Solution

    |

  6. Consider the sequence of natural numbers s0,s1,s2,... such that s0 =3,...

    Text Solution

    |

  7. Consider the area S(0),S(1),S(2)…. bounded by the x-axis and half-wave...

    Text Solution

    |

  8. "Two curves "C(1)equiv[f(y)]^(2//3)+[f(x)]^(1//3)=0 and C(2)equiv[f(y)...

    Text Solution

    |

  9. "Two curves "C(1)equiv[f(y)]^(2//3)+[f(x)]^(1//3)=0 and C(2)equiv[f(y)...

    Text Solution

    |

  10. "Two curves "C(1)equiv[f(y)]^(2//3)+[f(x)]^(1//3)=0 and C(2)equiv[f(y)...

    Text Solution

    |

  11. Consider the two curves C(1):y=1+cos x and C(2): y=1 + cos (x-alpha)" ...

    Text Solution

    |

  12. Consider two curves C1:y =1/x and C2.y=lnx on the xy plane. Let D1, de...

    Text Solution

    |

  13. Consider the function defined implicity by the equation y^(2)-2ye^(sin...

    Text Solution

    |

  14. Consider the function defined implicity by the equation y^(2)-2ye^(sin...

    Text Solution

    |

  15. Consider two functions f (x) ={[x] , -2 leq x leq -1 and |x|+1 , -1 ...

    Text Solution

    |

  16. Computing area with parametrically represented boundaries : If the bou...

    Text Solution

    |

  17. Computing area with parametrically represented boundaries : If the bou...

    Text Solution

    |

  18. Computing area with parametrically represented boundaries : If the bou...

    Text Solution

    |

  19. Let f(x) be a continuous function fiven by f(x)={(2x",", |x|le1),(x^(2...

    Text Solution

    |

  20. Let f(x) be continuous function given by f(x)={2x ,|x|lt=1x^2+a x+b ,|...

    Text Solution

    |