Home
Class 12
MATHS
The maximum value of y = sqrt((x-3)^(2...

The maximum value of
`y = sqrt((x-3)^(2)+(x^(2)-2)^(2))-sqrt(x^(2)-(x^(2)-1)^(2))` is

A

3

B

`sqrt(10)`

C

`2sqrt(5)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`y = f(x) = sqrt((x^(2)-2)^(2)+(x-3)^(2)) -sqrt(x^(2)+(x^(2)-1)^(2))`
Note that the first radical sign describes the distance between `P(x,x^(2))` and `A(3,2)` whereas the second radical sign describes the distance between `P(x,x^(2))` and `B(0,1)`. Now `PA -PB le AB` for possible positions of P. Hence `f(x)]_(max) =` distance between `AB = sqrt(9+1) = sqrt(10)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM

    CENGAGE|Exercise Comprehension Type|4 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Question Bank|22 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of the expression |sqrt(sin^(2)x+2a^(2))-sqrt(2a^(2)-3-cos^(2)x)| where a and x are real numbers is

if y=(sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)), then (dy)/(dx) is

The value of I=int_(-sqrt(3)/2)^(sqrt(3)/2)(dx)/((1-x)sqrt(1-x^(2))) is

If 1

Simplify : (sqrt(x^(2)+y^(2))-y)/(x-sqrt(x^(2)-y^(2)))-:(sqrt(x^(2)-y^(2))+x)/(sqrt(x^(2)+y^(2))+y)

If sqrt(a+ib)=x+iy, then possible value of sqrt(a-ib) is x^(2)+y^(2) b.sqrt(x^(2)+y^(2)) c.x+iydx-iy e.sqrt(x^(2)-y^(2))

If x is real,then the maximum value of y=2(a-x)(x+sqrt(x^(2)+b^(2)))

Minimum value of (x_(1)-x_(2))^(2)+(sqrt(2-x_(1)^(2))+x_(2)-8)^2 ,where x_(1)in[-sqrt(2),sqrt(2)] and x_(2)in R is

y=sqrt(x^(2)-3x+2)+(1)/(sqrt(3+2x-x^(2))) find the domain =?