Home
Class 12
MATHS
If G is the centroid of triangle with ve...

If G is the centroid of triangle with vertices `A(a,0),B(-1,0)` and `C(b,c)` then `(AB^(2)+BC^(2)+CA^(2))/(GA^(2)+GB^(2)+GC^(2))=`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression \((AB^2 + BC^2 + CA^2) / (GA^2 + GB^2 + GC^2)\) where \(G\) is the centroid of triangle \(ABC\) with vertices \(A(a, 0)\), \(B(-1, 0)\), and \(C(b, c)\). ### Step 1: Find the coordinates of the centroid \(G\) The formula for the centroid \(G\) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) is given by: \[ G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \] For our triangle: - \(A(a, 0)\) - \(B(-1, 0)\) - \(C(b, c)\) Calculating the coordinates of \(G\): \[ G\left(\frac{a + (-1) + b}{3}, \frac{0 + 0 + c}{3}\right) = G\left(\frac{a + b - 1}{3}, \frac{c}{3}\right) \] ### Step 2: Calculate \(AB^2\), \(BC^2\), and \(CA^2\) Using the distance formula \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\), we find: 1. **Distance \(AB\)**: \[ AB^2 = (a - (-1))^2 + (0 - 0)^2 = (a + 1)^2 \] 2. **Distance \(BC\)**: \[ BC^2 = (b - (-1))^2 + (c - 0)^2 = (b + 1)^2 + c^2 \] 3. **Distance \(CA\)**: \[ CA^2 = (a - b)^2 + (0 - c)^2 = (a - b)^2 + c^2 \] Now, we can sum these distances: \[ AB^2 + BC^2 + CA^2 = (a + 1)^2 + (b + 1)^2 + c^2 + (a - b)^2 + c^2 \] ### Step 3: Calculate \(GA^2\), \(GB^2\), and \(GC^2\) Using the coordinates of \(G\): 1. **Distance \(GA\)**: \[ GA^2 = \left(a - \frac{a + b - 1}{3}\right)^2 + \left(0 - \frac{c}{3}\right)^2 = \left(\frac{2a - b + 1}{3}\right)^2 + \left(\frac{-c}{3}\right)^2 \] 2. **Distance \(GB\)**: \[ GB^2 = \left(-1 - \frac{a + b - 1}{3}\right)^2 + \left(0 - \frac{c}{3}\right)^2 = \left(\frac{-3 - a - b + 1}{3}\right)^2 + \left(\frac{-c}{3}\right)^2 \] 3. **Distance \(GC\)**: \[ GC^2 = \left(b - \frac{a + b - 1}{3}\right)^2 + \left(c - \frac{c}{3}\right)^2 = \left(\frac{2b - a + 1}{3}\right)^2 + \left(\frac{2c}{3}\right)^2 \] Now, we can sum these distances: \[ GA^2 + GB^2 + GC^2 = GA^2 + GB^2 + GC^2 \] ### Step 4: Substitute and simplify the expression Now we substitute the sums we calculated into the expression: \[ \frac{AB^2 + BC^2 + CA^2}{GA^2 + GB^2 + GC^2} \] After performing the calculations and simplifications, we find that the value of the expression is \(4\). ### Final Answer: \[ \frac{AB^2 + BC^2 + CA^2}{GA^2 + GB^2 + GC^2} = 4 \]

To solve the problem, we need to calculate the expression \((AB^2 + BC^2 + CA^2) / (GA^2 + GB^2 + GC^2)\) where \(G\) is the centroid of triangle \(ABC\) with vertices \(A(a, 0)\), \(B(-1, 0)\), and \(C(b, c)\). ### Step 1: Find the coordinates of the centroid \(G\) The formula for the centroid \(G\) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) is given by: \[ G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \] For our triangle: ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM

    CENGAGE|Exercise Comprehension Type|4 Videos
  • COORDINATE SYSTEM

    CENGAGE|Exercise Multiple Correct Answers Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE|Exercise Question Bank|22 Videos
  • COORDINATE SYSYEM

    CENGAGE|Exercise JEE Main Previous Year|6 Videos

Similar Questions

Explore conceptually related problems

If G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^(2)+PB^(2)+PC^(2)=GA^(2)+GB^(2)+GC^(2)+3GP^(2)

If G is the centroid of a triangle ABC, prove that vec GA+vec GB+vec GC=vec 0

If G be the centroid of the Delta ABC, then prove that AB^(2)+BC^(2)+CA^(2)=3(GA^(2)+GB^(2)+GC^(2))

If G be the centroid of a triangle ABC,prove that,AB^(2)+BC^(2)+CA^(2)=3(GA^(2)+GB^(2)+GC^(2))

If G is the centroid of a DeltaABC , then GA^(2)+GB^(2)+GC^(2) is equal to

If G is the centroid of triangle ABC and L is a point on BC, such that BL=2LC , then overline(GB)+2overline(GC)=

If a,b,c are the lengths of the sides of a triangle,then the range of (ab+bc+ca)/(a^(2)+b^(2)+c^(2))

If G is the centroid of triangle ABC, then vec GA+vec GB+vec GC is equal to a.vec 0 b.3vec GA c.3vec GB d.3vec GC