Under rotation of axes through `theta` , `x cosalpha + ysinalpha=P` changes to `Xcos beta + Y sin beta=P`, then
A
`cos beta = cos (alpha - theta)`
B
`cos alpha = cos (beta - theta)`
C
`sin beta = sin (alpha - theta)`
D
`sin alpha = sin (beta - theta)`
Text Solution
Verified by Experts
The correct Answer is:
A, C
`x cos alpha +y sin alpha +P` Axis rotated through angle `theta`. Transformed equation `cos alpha (x cos theta - y sin theta) +sin alpha (x sin theta +y cos theta) = P` `x cos (alpha -theta) +y sin (alpha -theta) = P rArr x cos beta +y sin beta = P` where, `cos beta = cos (alpha-theta), sin beta = sin (alpha - theta)`
Topper's Solved these Questions
COORDINATE SYSTEM
CENGAGE|Exercise Comprehension Type|4 Videos
CONTINUITY AND DIFFERENTIABILITY
CENGAGE|Exercise Question Bank|22 Videos
COORDINATE SYSYEM
CENGAGE|Exercise JEE Main Previous Year|6 Videos
Similar Questions
Explore conceptually related problems
The lines x cos alpha+y sin alpha=P_(1) and x cos beta+y sin beta=P_(2) will be perpendicular,if :
If x cos alpha + y sin alpha = x cos beta + y sin beta = 2a then cos alpha cos beta =
The angle between the lines x cos alpha+y sin alpha=p_(1) and x cos beta+y sin beta=p_(2) when alpha>beta
If x=cos alpha+i sin alpha, y=cos beta+i sin beta then " (y)/(x)-(x)/(y)=
If x cos alpha + y sin alpha = x cos beta + y sin beta = a, 0
The angle between lines x cos alpha+y sin alpha=p_(1), and x cos beta+y sin beta=p_(2), where alpha>beta is
Prove that the area of the parallelogram formed by the lines x cos alpha+y sin alpha=p,x cos alpha+y sin alpha=q,x cos beta+y sin beta=r and x cos beta+y sin beta=sis+-(p-q)(r-s)csc(alpha-beta)
CENGAGE-COORDINATE SYSTEM-Multiple Correct Answers Type