Home
Class 12
MATHS
Given a parabola y^(2) = 4ax and the poi...

Given a parabola `y^(2) = 4ax` and the points `A(a t^(2),2at), B(a t^(-2),2a t^(-1)), C ((4a)/(t^(2)),(4a)/(t))D (a(t+(2)/(t))^(2),-2a (t+(2)/(t)))` choose all the correct alternative.

A

AB is a focal chord

B

AD is a normal chord

C

Normals at A,C intersect on the parabola

D

Tangents at A,B intersect at `90^(@)` on the directrix.

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

AB is focal chord, tangents at which to the parabola intersect on dirextrix. AD is normal chord of the parabola.
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    CENGAGE|Exercise Comprehension Type|2 Videos
  • PARABOLA

    CENGAGE|Exercise Matching Column Type|1 Videos
  • PARABOLA

    CENGAGE|Exercise Single Correct Answer Type|46 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|19 Videos

Similar Questions

Explore conceptually related problems

If a circle intersects the parabola y^(2) = 4ax at points A(at_(1)^(2), 2at_(1)), B(at_(2)^(2), 2at_(2)), C(at_(3)^(2), 2at_(3)), D(at_(4)^(2), 2at_(4)), then t_(1) + t_(2) + t_(3) + t_(4) is

If x=t^(2),y=t^(3), then (d^(2)y)/(dx^(2))=(a)(3)/(2)(b)(3)/((4t)) (c) (3)/(2(t)) (d) (3t)/(2)

If x=2(t+(1)/(t)),y=3(t-(1)/(t)) then (x^(2))/(4)-(y^(2))/(9) is equal to

The normal drawn at a point (at_(1)^(2),-2at_(1)) of the parabola y^(2)=4ax meets it again in the point (at_(2)^(2),2at_(2)), then t_(2)=t_(1)+(2)/(t_(1))(b)t_(2)=t_(1)-(2)/(t_(1))t_(2)=-t_(1)+(2)/(t_(1))(d)t_(2)=-t_(1)-(2)/(t_(1))

The locus of the point x=(t^(2)-1)/(t^(2)+1),y=(2t)/(t^(2)+1)

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

int(t+2)/((t^(2)+4t+2))dt

If x=t^(2),quad y=t^(3), then (d^(2)y)/(dx^(2))=3/2(b)3/4t(c)3/2t(d)3t/2

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =