Home
Class 12
MATHS
If e and e' are the eccentricities of th...

If `e and e'` are the eccentricities of the hyperbola `x^2/a^2-y^2/b^2=1 and y^2/b^2-x^2/a^2=1,` then the point `(1/e,1/(e'))` lies on the circle (A) `x^2+y^2=1` (B) `x^2+y^2=2` (C) `x^2+y^2=3` (D) `x^2+y^2=4`

A

`x^(2)+y^(2)=1`

B

`x^(2)+y^(2)=2`

C

`x^(2)+y^(2)=3`

D

`x^(2)+y^(2)=4`

Text Solution

Verified by Experts

The correct Answer is:
A

For `(x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1, e^(2) =1 + (b^(2))/(a^(2)) = (a^(2)+b^(2))/(a^(2))` ltrgt For `(y^(2))/(b^(2)) -(x^(2))/(a^(2)) =1, (e')^(2) =1 + (a^(2))/(b^(2)) =(b^(2)+a^(2))/(b^(2))`
`rArr (1)/(e^(2)) + (1)/((e')^(2))`
`= (a^(2))/(a^(2)+b^(2)) + (b^(2))/(b^(2)+a^(2))`
`= (a^(2)+b^(2))/(a^(2)+b^(2)) =1`
So the point `((1)/(e),(1)/(e))` lie on `x^(2) + y^(2) =1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If e and e\' are the eccentricities of the hyperbola x^2/a^2 - y^2/b^2 = 1 and its conjugate hyperbola, prove that 1/e^2 + 1+e\'^2 = 1

If e and e' are the eccentricities of the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1 and its conjugate hyperbola,the value of 1/e^(2)+1/e^prime2 is

If e and e_(1) , are the eccentricities of the hyperbolas xy=c^(2) and x^(2)-y^(2)=c^(2) , then e^(2)+e_(1)^(2) is equal to

If e_(1) and e_(2) are the eccentricities of a hyperbola 3x^(2)-2y^(2)=25 and its conjugate, then

If e' is the eccentricity of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 (a gt b) , then

If e and e_(1) are the eccentricities of xy=c^(2),x^(2)-y^(2)=a^(2) then e^(4)+e_(1)^(4)=