Home
Class 12
MATHS
The point (3tan (theta +60^(@)),2 tan(th...

The point `(3tan (theta +60^(@)),2 tan(theta +30^(@)))` lies on the conic, then its centre is `(theta` is the parameter)

A

`(-3sqrt(3),2sqrt(3))`

B

`(3sqrt(3),-2sqrt(3))`

C

`(-3sqrt(3),-2sqrt(3))`

D

(0,0)

Text Solution

Verified by Experts

The correct Answer is:
A

Let `(3 tan (theta + 60^(@)),2 tan (theta + 30^(@)) -= (h,k)`
`:. tan (theta + 60^(@)) = (h)/(3)` (1)
and `tan (theta + 30^(@)) = (k)/(2)` (2)
`tan 30^(@) = tan [(theta + 60^(@))- (theta + 30^(@))]`
`rArr (1)/(sqrt(3)) = (tan (theta+60^(@))-tan(theta+30^(@)))/(1+tan (theta+60^(@))tan (theta+30^(@)))`
`rArr (1)/(sqrt(3)) =((x)/(3)-(y)/(2))/(1+(xy)/(6))`
`rArr xy - 2sqrt(3)x + 3sqrt(3)y + 6 =0`
`rArr (x+3sqrt(3)) (y-2sqrt(3)) + 24 =0`
`rArr` center is `(-3sqrt(2),2sqrt(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

If tan 4 theta = cot (2 theta +30^(@)) , then theta is equal to :

sec theta-tan theta=3 then theta lies in the quadrant

If: tan theta + tan 2theta = tan 3theta , then: theta =

If tan(theta + 3theta) tan (2theta + 3theta)=1 , then the value of sin(5theta - 2theta) is:

Prove that: tan theta tan(60^(@)-theta)tan(60^(@)+theta)=tan3 theta