Home
Class 12
MATHS
int u(d^(2)v)/(dx^(2))-int v(d^(2)u)/(dx...

int u(d^(2)v)/(dx^(2))-int v(d^(2)u)/(dx^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

The function u=e^(x)sin x,v=e^(x)cos x satisfy the equation (a) v(du)/(dx)-u(du)/(dx)=u^(2)+v^(2)(b)(d^(2)u)/(dx^(2))=2v(c)d^(2)v())/(dx^(2))=-2u(d)(du)/(dx)+(dv)/(dx)=2v

If : (dx)/(dy)=u" and "(d^(2)x)/(dy^(2))=v," then: "(d^(2)y)/(dx^(2))=

If y = e^u and u = f(x), show that, (d^2y)/(dx^2) = e^u [(d^2u)/(dx^2) + ((du)/(dx))^2] .

The function u=e^x sin x ; v=e^x cos x satisfy the equation a. v(d u)/(dx)-u(d v)/(dx)=u^2+v^2 b. (d^2u)/(dx^2)=2v c. (d^2v)/(dx^2)=-2u d. (d u)/(dx)+(d v)/(dx)=2v

If y=e^u and u=f(x) , show that, (d^2y)/(dx^2)=e^u[(d^2u)/(dx^2)+((du)/dx)^2]

The function u=e^x sinx ; v=e^x cos x satisfy the equation v(d u)/(dx)-u(d v)/(dx)=u^2+v^2 b. (d^2u)/(dx^2)=2v c. (d^2)/(dx^2)=-2u d. (d u)/(dx)+(d v)/(dx)=2v

int(u(v(du)/(dx)-u(dv)/(dx)))/(v^(3))dx=

Evaluate the following integrals (i) int_(R)^(oo)(GMm)/(x^(2))dx (ii) int_(r_(1))^(r_(2))-k(q_(1)q_(2))/(x^(2))dx (iii) int_(u)^(v)Mvdv (iv) int_(0)^(oo)x^(-1//2)dx (v) int_(0)^(pi//2)sin x dx (vi) int_(0)^(pi//2)cos x dx (vii) int_(-pi//2)^(pi//2) cos x dx

int(vdu-udv)/(u^(2)+v^(2))=

int(udu+vdv)/(u^(2)+v^(2))=