Home
Class 7
MATHS
fI(n)=int sin^(n)xdx," then "nI(n)-(n-1)...

fI_(n)=int sin^(n)xdx," then "nI_(n)-(n-1)I_(n-2)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n) = int sin^(n)x dx , then nI_(n)-(n-1)I_(n-2)=

If n in N and I_(n) = intsin^(n) x dx then nI_(n)-(n-1)I_(n-2) =

If I_(n)=int cos^(n)xdx, then (n+1)I_(n+1)-nI_(n-1)=

If I_n = int sin^n x dx then nI_n - (n - 1)I_(n-2) = f(x)+c where f(x) =

If I_n = int sin^n x \ dx, then n I_n - (n-1) I_(n-2) equals

If n(ne 1) in N and I_(n) =int sec^(n)x dx then (n-1) I_(n)-(n-2)I_(n-2) =

If n(ne 1) in N and I_(n) = int tan^(n) x dx then I_(n)+I_(n-2) =

If I_(n)=int(lnx)^(n)dx then I_(n)+nI_(n-1)

If I_(n)=int sin^(n)x backslash dx, then nI_(n)-(n-1)I_(n-2) equals