Home
Class 11
MATHS
f(x)=(1)/((x^(2)-1)(x+3))...

f(x)=(1)/((x^(2)-1)(x+3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(x)=(1)/((x^(2)+2x+1)^((1)/(3))+(x^(2)-1)^((1)/(3))+(x^(2)-2x+1)^((1)/(3))) and E=f(1)+f(3)+f(5)+............+f(999)

The function f(x)=(x^(2)-1)/(x^(3)-1) is not defined at x = 1. What value must we give f(1) in order to make f(x) continuous at x = 1?

The function f(x)={{:((x^(2)-1)/(x^(3)+1)" "xne1),(P" "x=-1):} is not defined for x = -1. The value of f(-1) so that the function extended by this value is continuous is

The range of the function f(x)=tan^(-1)((x^(2)+1)/(x^(2)+sqrt(3)))x in R is

Let f(x)=cot^(-1)((x^(2)-x+1)/(2x-3x^(2))+(x^(2)-x+1)/(3-2x)) and if f((3)/(2))+f((5)/(7))+f((2)/(3))+f((7)/(5))=k pi then k is

If f(x)=(1+x)(1+x^2)(1+x^3)(1+x^4) , then f'(0)=1

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3) What is the number of point of local minima of the function f(x)?

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3) What is the number of point of local maxima of the function f(x)?

Let f:R rarr R and f(x+(5)/(6))+f(x)=f(x+(1)/(2))+f(x+(1)/(3)) then