Home
Class 12
MATHS
Discuss the continutily of the following...

Discuss the continutily of the following fuction at x=1 and 2
`f(x)={(5x-4 ", " x le1),(4x^2-3x", " 1 ltx lt2),(3x+4", "x ge 2):}`

Text Solution

AI Generated Solution

The correct Answer is:
To discuss the continuity of the given piecewise function at \( x = 1 \) and \( x = 2 \), we will follow these steps: ### Step 1: Define the function The function is defined as follows: \[ f(x) = \begin{cases} 5x - 4 & \text{if } x \leq 1 \\ 4x^2 - 3x & \text{if } 1 < x < 2 \\ 3x + 4 & \text{if } x \geq 2 \end{cases} \] ### Step 2: Check continuity at \( x = 1 \) To check the continuity at \( x = 1 \), we need to verify three conditions: 1. \( f(1) \) is defined. 2. \( \lim_{x \to 1^-} f(x) \) exists. 3. \( \lim_{x \to 1^+} f(x) \) exists. **Calculating \( f(1) \)**: Since \( x = 1 \) falls in the first case of the piecewise function: \[ f(1) = 5(1) - 4 = 1 \] **Calculating \( \lim_{x \to 1^-} f(x) \)**: As \( x \) approaches 1 from the left: \[ \lim_{x \to 1^-} f(x) = 5(1) - 4 = 1 \] **Calculating \( \lim_{x \to 1^+} f(x) \)**: As \( x \) approaches 1 from the right, we use the second piece of the function: \[ \lim_{x \to 1^+} f(x) = 4(1)^2 - 3(1) = 4 - 3 = 1 \] Since all three values are equal: \[ f(1) = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 1 \] Thus, \( f(x) \) is continuous at \( x = 1 \). ### Step 3: Check continuity at \( x = 2 \) Now, we will check the continuity at \( x = 2 \) using the same three conditions. **Calculating \( f(2) \)**: Since \( x = 2 \) falls in the third case of the piecewise function: \[ f(2) = 3(2) + 4 = 6 + 4 = 10 \] **Calculating \( \lim_{x \to 2^-} f(x) \)**: As \( x \) approaches 2 from the left, we use the second piece of the function: \[ \lim_{x \to 2^-} f(x) = 4(2)^2 - 3(2) = 16 - 6 = 10 \] **Calculating \( \lim_{x \to 2^+} f(x) \)**: As \( x \) approaches 2 from the right: \[ \lim_{x \to 2^+} f(x) = 3(2) + 4 = 6 + 4 = 10 \] Since all three values are equal: \[ f(2) = \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = 10 \] Thus, \( f(x) \) is continuous at \( x = 2 \). ### Conclusion The function \( f(x) \) is continuous at both \( x = 1 \) and \( x = 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5b|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

Examine the continuity of the following function at x = 1 f(x) = {(x+2,-1 le x lt1),(4-x,1 le x):}

Discuss the continutiy of the function f(x)= {(3x+5", " x ge 2),(6x-1", " x lt 2):}

Discuss of the continutiy of the fuction f(x)={{:(sin x/2 ", " x lt 0),(x+2 "," x ge 0):}

Discuss the continutiy of the function f(x)= {(4x-2", " x le 2),(3x", " x gt 2):}

Discuss the continuity of the function f(x)={{:(2x -1 "," x lt 1),(3x-2"," x ge 1):}

If f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 le x le 10):} , then

Evaluate the left-hand and right-hand limits of the following function at x = 1 : f(x)={{:(5x-4",", "if "0 lt x le 1), (4x^(2)-3x",", "if "1 lt x lt 2.):} Does lim_(x to 1)f(x) exist ?

Discuss the continuity of the function f, where f is defined by f(x){{:(3"," if 0 le x le 1),(4"," if 1lt x lt 3 ),(5"," if 3 le x le 10):}

NAGEEN PRAKASHAN-Continuity and Differentiability-Exercies 5a
  1. Discuss the continuity of the function = f(x)={(3-x", "x le 0),(x...

    Text Solution

    |

  2. Show that the function f(x)={(x-4", "x le 5),(5x-24", "xgt5):}...

    Text Solution

    |

  3. Discuss the continutily of the following fuction at x=1 and 2 f(x)...

    Text Solution

    |

  4. If f(x)={(x^2+1", "x ne 1),(" "3 ", "x=1):} , then check whethe...

    Text Solution

    |

  5. Discuss the continuiy of the function f(x)={(1/x ", " x ne 0),(1...

    Text Solution

    |

  6. Discuss the continuity of the function f(x)={((|x|)/x", " xne 0)...

    Text Solution

    |

  7. (i) Dissusse the continuity of the function f(x)={(|x-a|", " xne a...

    Text Solution

    |

  8. Show that f(x) = sinx is continuous for all values of x.

    Text Solution

    |

  9. Prove that f(x) = {sinx/x ; x != 0 and 1 ; x=0. is continuous at x=0...

    Text Solution

    |

  10. If f(x) ={:{((sin 3x)/(sin 5x)", "x ne 0),(0", " x= 0):}, then d...

    Text Solution

    |

  11. Show that the function f(x) ={:{((sin 3x)/(x)", "x ne 0),(1", " ...

    Text Solution

    |

  12. Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", ...

    Text Solution

    |

  13. Discuss the continuity of f(x) ={:{(cos""(1)/(x)", "x ne 0),(" "1",...

    Text Solution

    |

  14. Discuss the continuity of f(x) ={:{(sin""(1)/(x)", "x ne 0),(" "1", ...

    Text Solution

    |

  15. Discuss the continutiy of f(x) ={:{(xcos""(1)/(x)", "x ne 0),(" "0...

    Text Solution

    |

  16. Disuss the continutiy of f(x) ={:{((sin^2 x)/(x^2)", "x ne 0),(" "0"...

    Text Solution

    |

  17. If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", ...

    Text Solution

    |

  18. For what value of k, the function f(x) ={:{(Kx^2", " x le 2 ),(" ...

    Text Solution

    |

  19. For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2...

    Text Solution

    |

  20. For what value of k, the function f(x) ={:{(2x+1", "x gt2),(" ...

    Text Solution

    |