`e^(x/a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( e^{(x/a)} \) with respect to \( x \), we will use the chain rule of differentiation. Here are the steps to solve the problem: ### Step 1: Identify the function The function we need to differentiate is: \[ y = e^{(x/a)} \] ### Step 2: Apply the chain rule The chain rule states that if you have a composite function \( y = e^{u} \) where \( u = \frac{x}{a} \), then the derivative \( \frac{dy}{dx} \) can be found using: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] ### Step 3: Differentiate the outer function The derivative of \( e^{u} \) with respect to \( u \) is: \[ \frac{dy}{du} = e^{u} \] ### Step 4: Differentiate the inner function Next, we differentiate \( u = \frac{x}{a} \) with respect to \( x \): \[ \frac{du}{dx} = \frac{1}{a} \] ### Step 5: Combine the derivatives Now, we can combine the results from Step 3 and Step 4: \[ \frac{dy}{dx} = e^{u} \cdot \frac{du}{dx} = e^{(x/a)} \cdot \frac{1}{a} \] ### Step 6: Write the final answer Thus, the differential coefficient of \( e^{(x/a)} \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{a} e^{(x/a)} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if y = e ^ ((x) ^ (e ^ x)) + x ^ (e ^ (e ^ x)) + e ^ (x ^ (x ^ e)), then dy / dx = e ^ (( x) ^ (e ^ x)) x ^ (e ^ x) [e ^ xlogx + e ^ x / x] + x ^ (e ^ (e ^ x)) e ^ (e ^ x) [1 / x + e ^ xlogx] + e ^ (x ^ (x ^ e)) x ^ (x ^ e) x ^ (e-1) [1 + elogx]

Differentiate (e^(x)+e^(-x))/(e^(x)-e^(-x))

(e^x+e^-x)/(e^x-e^(-x))

int (e ^ (x) -e ^ (- x)) / (e ^ (x) + e ^ (- x)) * dx

int (e ^ (x) + e ^ (- x)) / (e ^ (x) -e ^ (- x)) dx

int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))dx=g(x)e^(e^x+e^(-x)) , then find g(0) .

int(2)/((e^(x)+e^(-x))^(2))dx(e^(-x))/(e^(x)+e^(-x))+C(b)-(1)/(e^(x)+e^(-x))+C(c)(-1)/((e^(x)+1)^(2))+C(d)(1)/(e^(x)-e^(-x))+C

Evaluate int((e^(x)-e^(-x))/(e^(x)+e^(-x)))dx and the value is (A)log|e^(x)+e^(-x)|(B)log|e^(x)+e^(-x)|+k(C)log|e^(x)-e^(-x)|+k(D) none of these

If x_(1),x_(2),x_(3),……………..x_(13) are in A.P. then the value of |(e^(x_(1)),e^(x_(4)),e^(x^(7))),(e^(x_(4)),e^(x_(7)),e^(x_(10))),(e^(x_(7)),e^(x_(10)),e^(x_(13)))| is

The differentiation of e^(x) with respect to x is e^(x). i.e.(d)/(dx)(e^(x))=e^(x)