Home
Class 12
MATHS
log cos x...

log cos x

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log(\cos x) \) with respect to \( x \), we will use the chain rule and the derivatives of logarithmic and trigonometric functions. ### Step-by-Step Solution: 1. **Identify the function**: We have \( y = \log(\cos x) \). 2. **Apply the chain rule**: The derivative of \( \log(u) \) with respect to \( x \) is given by \( \frac{1}{u} \cdot \frac{du}{dx} \). Here, \( u = \cos x \). 3. **Differentiate \( \log(\cos x) \)**: \[ \frac{dy}{dx} = \frac{1}{\cos x} \cdot \frac{d}{dx}(\cos x) \] 4. **Differentiate \( \cos x \)**: The derivative of \( \cos x \) is \( -\sin x \). \[ \frac{d}{dx}(\cos x) = -\sin x \] 5. **Substitute back into the derivative**: \[ \frac{dy}{dx} = \frac{1}{\cos x} \cdot (-\sin x) \] 6. **Simplify the expression**: \[ \frac{dy}{dx} = -\frac{\sin x}{\cos x} \] 7. **Recognize the trigonometric identity**: The expression \( -\frac{\sin x}{\cos x} \) can be rewritten as: \[ \frac{dy}{dx} = -\tan x \] ### Final Result: Thus, the derivative of \( y = \log(\cos x) \) is: \[ \frac{dy}{dx} = -\tan x \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Prove that: log sin8x=3log2+log sin x+log cos2x+log cos4x

If y = log (cos e^(x)), then (dy)/(dx) is:

int sin log x+cos log x]backslash dx is equal to

For 0 lt x lt (pi)/(2) , let P_(mn)(x)=m log_(cos x) ( sin x)+ n log_(cos x)(cotx) , where m, n in {1, 2,...,9} [For example: P_(29)(x)=2log_(cosx)(sinx)+9log_(cos x)( cot x) and " " P_(77)(x)=7 log_(cos x)(sin x)+(7 log_(cos x) ( cot x) ] On the basis of above information, answer the following questions : If P_(34)(x)=P_(22)(x) , then the value of sin x is expressed as ((sqrt(q)-1)/(p)) , then (p+q) equals

The domain of definition of f(x)=log x cos x is

lim_(x rarr0)[(ln cos x)/((1+x^(2))^((1)/(4))-1)]

Evaluate int cosec^(2)x ln (cos x + sqrt(cos 2x))dx .

If y = log ( cos e ^(x)), then (dy)/(dx)=

Compute the arc length of the curve y= ln cos x between the points with the abscissas x=0, x= (pi)/(4)