Home
Class 12
MATHS
sqrt(sin x)...

`sqrt(sin x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( f(x) = \sqrt{\sin x} \), we will differentiate it with respect to \( x \). ### Step-by-Step Solution: 1. **Rewrite the Function**: We start by rewriting the function in a more convenient form for differentiation: \[ f(x) = (\sin x)^{1/2} \] 2. **Apply the Power Rule**: We will use the chain rule for differentiation. According to the chain rule, if \( f(x) = g(h(x)) \), then: \[ f'(x) = g'(h(x)) \cdot h'(x) \] Here, let \( g(u) = u^{1/2} \) where \( u = \sin x \). 3. **Differentiate the Outer Function**: Differentiate \( g(u) = u^{1/2} \): \[ g'(u) = \frac{1}{2} u^{-1/2} = \frac{1}{2 \sqrt{u}} \] 4. **Differentiate the Inner Function**: Now, differentiate the inner function \( h(x) = \sin x \): \[ h'(x) = \cos x \] 5. **Combine the Results**: Now, we apply the chain rule: \[ f'(x) = g'(\sin x) \cdot h'(x) = \frac{1}{2 \sqrt{\sin x}} \cdot \cos x \] 6. **Simplify the Expression**: Thus, we can write the derivative as: \[ f'(x) = \frac{\cos x}{2 \sqrt{\sin x}} \] ### Final Answer: The differential coefficient of the function \( \sqrt{\sin x} \) with respect to \( x \) is: \[ \frac{\cos x}{2 \sqrt{\sin x}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

sqrt(1+sin x)

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

the expression ((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=

(cot^(-1){sqrt(1+sin x)+sqrt(1-sin x)})/(sqrt(1+sin x)-sqrt(1-sin x))

Find the value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x))]

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))

Prove that : cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))=(x)/(2),0

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2),x(0,(pi)/(4))

Prove the following: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x epsilon(0,(pi)/(4))