Home
Class 12
MATHS
tan sqrt(x)...

`tan sqrt(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( \tan(\sqrt{x}) \) with respect to \( x \), we will use the chain rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the function We have the function \( y = \tan(\sqrt{x}) \). ### Step 2: Differentiate using the chain rule The chain rule states that if you have a function \( y = f(g(x)) \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \] In our case, \( f(g) = \tan(g) \) where \( g(x) = \sqrt{x} \). ### Step 3: Differentiate \( f(g) = \tan(g) \) The derivative of \( \tan(g) \) with respect to \( g \) is: \[ f'(g) = \sec^2(g) \] Thus, substituting \( g = \sqrt{x} \): \[ f'(\sqrt{x}) = \sec^2(\sqrt{x}) \] ### Step 4: Differentiate \( g(x) = \sqrt{x} \) Now, we need to differentiate \( g(x) = \sqrt{x} \): \[ g'(x) = \frac{1}{2\sqrt{x}} \] ### Step 5: Combine the derivatives Now we can combine the derivatives using the chain rule: \[ \frac{dy}{dx} = f'(\sqrt{x}) \cdot g'(x) = \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 6: Write the final answer Thus, the derivative of \( y = \tan(\sqrt{x}) \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{\sec^2(\sqrt{x})}{2\sqrt{x}} \] ### Summary of the solution: The differential coefficient of \( \tan(\sqrt{x}) \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{\sec^2(\sqrt{x})}{2\sqrt{x}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[(tan sqrt(5x))] =

If y=sqrt(tan x+sqrt(tan x +sqrt(tan x+....oo))) " then prove that " dy/dx = sec^2 x /(2y-1).

If y=sqrt(tan x+sqrt(tan x+sqrt(tan x+...+oo))) then prove that (2y-1)(dy)/(dx)-sec^(2)x=0

y=sqrt(tan x+sqrt(tan x+sqrt(tan x+rarr oo))) prove that (dy)/(dx)=(sec^(2)x)/(2y-1)

Evaluate: int(sqrt(tan x)+sqrt(cot x))dx

Evaluate: int(sqrt(tan x)+sqrt(cot x))dx

tan x+tan2x+sqrt(3)tan x*tan2x=sqrt(3)

Solve tan x+tan2x+sqrt(3)tan x tan2x=sqrt(3)

lim_(x rarr0)(sqrt(1+tan x)-sqrt(1-tan x))/(sin x)=

int_(0)^((pi)/(2))(sqrt(cot x))/(sqrt(tan x)+sqrt(cot x))dx=