Home
Class 12
MATHS
cosecsqrt(x)...

cosec`sqrt(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \csc(\sqrt{x}) \), we will use the chain rule and the derivatives of the cosecant and square root functions. ### Step-by-Step Solution: 1. **Identify the Function**: We have \( y = \csc(\sqrt{x}) \). 2. **Differentiate Using the Chain Rule**: According to the chain rule, if \( y = \csc(u) \) where \( u = \sqrt{x} \), then: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] 3. **Find \( \frac{dy}{du} \)**: The derivative of \( \csc(u) \) is: \[ \frac{dy}{du} = -\csc(u) \cot(u) \] So, substituting \( u = \sqrt{x} \): \[ \frac{dy}{du} = -\csc(\sqrt{x}) \cot(\sqrt{x}) \] 4. **Find \( \frac{du}{dx} \)**: Now, we need to differentiate \( u = \sqrt{x} \): \[ \frac{du}{dx} = \frac{d}{dx}(x^{1/2}) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] 5. **Combine the Results**: Now, substitute \( \frac{dy}{du} \) and \( \frac{du}{dx} \) back into the chain rule: \[ \frac{dy}{dx} = -\csc(\sqrt{x}) \cot(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] 6. **Final Result**: Therefore, the derivative of \( y = \csc(\sqrt{x}) \) is: \[ \frac{dy}{dx} = -\frac{\csc(\sqrt{x}) \cot(\sqrt{x})}{2\sqrt{x}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the general solutions of each of the following equations : 1. cosec x=-sqrt(2) (2) tan3x=-1 .

Find the general solution of each equation : (i) sqrt(3)cotx+1=0 (ii) "cosec "x+sqrt(2)=0

cot x+csc x=sqrt(3)

If cot x + cosec x = sqrt(3)x , then the principal value of (x-(pi)/(6)) is

If the sum of the series sum_(k)^(i) (sec^(-1)sqrt(|x|) - cosec^(-1)sqrt(|x|)/(pi a)) is finite where |x|>=1 and a>0 then range of values of a is

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a

If the sum of the series sum_(n=1)^(oo)((sec^(-1)sqrt(|x|)+cosec^(-1)sqrt(|x|))/(pi a))^n is finite where |x|>=1 and a>0 then range of values of a