`e^(tanx)`

Text Solution

Verified by Experts

The correct Answer is:
`e^(tan x).sec^2x`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr0)((e^(tan-x)-1))/(tanx)

y=(tanx)^(cotx)+(cotx)^(tanx)

Find the integral of e^x(tanx+log(secx)))

int e^x(tanx +sec^2x)dx

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

Evaluate the following limit: (lim)_(x->0)(e^(t a n x)-e^x)/(tanx-x)

Evaluate: int_0^pi(xtanx)/(s e c x+tanx)dx

If f(x) = (log_(e)(1+x^(2)tanx))/(sinx^(3)), x != 0 is continuous at x = 0 then f(0) must be defined as

If y=[(tanx)^(tanx)]^(tanx) ,then at x=pi/4 , the value of (dy)/(dx)=

Find f'(x) if f(x) = (tanx)^(tanx)