Home
Class 12
MATHS
tan (e^x+5)...

`tan (e^x+5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( f(x) = \tan(e^x + 5) \) with respect to \( x \), we will use the chain rule of differentiation. ### Step-by-Step Solution: 1. **Identify the outer and inner functions**: - The outer function is \( \tan(u) \) where \( u = e^x + 5 \). - The inner function is \( u = e^x + 5 \). 2. **Differentiate the outer function**: - The derivative of \( \tan(u) \) is \( \sec^2(u) \). - Therefore, \( \frac{d}{du} \tan(u) = \sec^2(u) \). 3. **Differentiate the inner function**: - The derivative of \( u = e^x + 5 \) is \( \frac{d}{dx}(e^x + 5) = e^x + 0 = e^x \). 4. **Apply the chain rule**: - According to the chain rule, \( \frac{d}{dx} \tan(u) = \frac{d}{du} \tan(u) \cdot \frac{du}{dx} \). - Thus, we have: \[ \frac{d}{dx} \tan(e^x + 5) = \sec^2(e^x + 5) \cdot e^x \] 5. **Final result**: - Therefore, the derivative of \( f(x) = \tan(e^x + 5) \) is: \[ f'(x) = e^x \sec^2(e^x + 5) \] ### Summary: The differential coefficient of \( \tan(e^x + 5) \) with respect to \( x \) is \( e^x \sec^2(e^x + 5) \).
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

int (e ^ (x) log (sin e ^ (x))) / (tan (e ^ (x)) dx)

Find dy/dx if y=tan(e^(x))

int e^(x)tan e^(x)dx

int e^(x)tan(e^(x))dx

integrated e ^ (x) (log sin e ^ (x)) / (tan e ^ (x))

int e^(x)sec e^(x)tan e^(x)dx

Let f(x)=(e^(tan x)-e^(x)+ln(sec x+tan x)-x)/(tan x-x) be a continuous function at x=0. The value f(0) equals

Prove that int e^x (tan^-1 x+1/(1+x^2)) dx=e^x tan^-1x+c

inte^(-x)tan^-1(e^x)dx

If y = log [ sece^(x^(2)) ] then (dy)/(dx) = (a) 2xe^(x^(2))(tan e^(x^(2))) (b) 2xe^(x^(2))(sec x^(2))(tan e^(x^(2))) (c) x^(2)e^(x^(2))tan e^(x^(2)) (d) e^(x^(2))tan e^(x^(2))